These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 17081495)
1. Pulse radiolysis and steady-state analyses of the reaction between hydroethidine and superoxide and other oxidants. Zielonka J; Sarna T; Roberts JE; Wishart JF; Kalyanaraman B Arch Biochem Biophys; 2006 Dec; 456(1):39-47. PubMed ID: 17081495 [TBL] [Abstract][Full Text] [Related]
2. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Zhao H; Kalivendi S; Zhang H; Joseph J; Nithipatikom K; Vásquez-Vivar J; Kalyanaraman B Free Radic Biol Med; 2003 Jun; 34(11):1359-68. PubMed ID: 12757846 [TBL] [Abstract][Full Text] [Related]
3. HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes--the ultimate approach for intra- and extracellular superoxide detection. Kalyanaraman B; Dranka BP; Hardy M; Michalski R; Zielonka J Biochim Biophys Acta; 2014 Feb; 1840(2):739-44. PubMed ID: 23668959 [TBL] [Abstract][Full Text] [Related]
4. Degradation of carbon tetrachloride by modified Fenton's reagent. Teel AL; Watts RJ J Hazard Mater; 2002 Oct; 94(2):179-89. PubMed ID: 12169420 [TBL] [Abstract][Full Text] [Related]
5. Hydropropidine: a novel, cell-impermeant fluorogenic probe for detecting extracellular superoxide. Michalski R; Zielonka J; Hardy M; Joseph J; Kalyanaraman B Free Radic Biol Med; 2013 Jan; 54():135-47. PubMed ID: 23051008 [TBL] [Abstract][Full Text] [Related]
6. Reactivity of hypotaurine and cysteine sulfinic acid toward carbonate radical anion and nitrogen dioxide as explored by the peroxidase activity of Cu,Zn superoxide dismutase and by pulse radiolysis. Baseggio Conrado A; D'Angelantonio M; Torreggiani A; Pecci L; Fontana M Free Radic Res; 2014 Nov; 48(11):1300-10. PubMed ID: 25156684 [TBL] [Abstract][Full Text] [Related]
7. Recent developments in detection of superoxide radical anion and hydrogen peroxide: Opportunities, challenges, and implications in redox signaling. Kalyanaraman B; Hardy M; Podsiadly R; Cheng G; Zielonka J Arch Biochem Biophys; 2017 Mar; 617():38-47. PubMed ID: 27590268 [TBL] [Abstract][Full Text] [Related]
8. Reaction of ferrate (VI)/ferrate (V) with hydrogen peroxide and superoxide anion--a stopped-flow and premix pulse radiolysis study. Rush JD; Zhao Z; Bielski BH Free Radic Res; 1996 Mar; 24(3):187-98. PubMed ID: 8728120 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic similarities between oxidation of hydroethidine by Fremy's salt and superoxide: stopped-flow optical and EPR studies. Zielonka J; Zhao H; Xu Y; Kalyanaraman B Free Radic Biol Med; 2005 Oct; 39(7):853-63. PubMed ID: 16140206 [TBL] [Abstract][Full Text] [Related]
10. Detection and identification of oxidants formed during •NO/O2•⁻ reaction: a multi-well plate CW-EPR spectroscopy combined with HPLC analyses. Koto T; Michalski R; Zielonka J; Joseph J; Kalyanaraman B Free Radic Res; 2014 Apr; 48(4):478-86. PubMed ID: 24460755 [TBL] [Abstract][Full Text] [Related]
11. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Zielonka J; Kalyanaraman B Free Radic Biol Med; 2010 Apr; 48(8):983-1001. PubMed ID: 20116425 [TBL] [Abstract][Full Text] [Related]
12. HPLC-Based Monitoring of Oxidation of Hydroethidine for the Detection of NADPH Oxidase-Derived Superoxide Radical Anion. Zielonka J; Zielonka M; Kalyanaraman B Methods Mol Biol; 2019; 1982():243-258. PubMed ID: 31172476 [TBL] [Abstract][Full Text] [Related]
13. Mechanism for the destruction of carbon tetrachloride and chloroform DNAPLs by modified Fenton's reagent. Smith BA; Teel AL; Watts RJ J Contam Hydrol; 2006 May; 85(3-4):229-46. PubMed ID: 16546290 [TBL] [Abstract][Full Text] [Related]
14. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Zhao H; Joseph J; Fales HM; Sokoloski EA; Levine RL; Vasquez-Vivar J; Kalyanaraman B Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5727-32. PubMed ID: 15824309 [TBL] [Abstract][Full Text] [Related]
15. The confounding effects of light, sonication, and Mn(III)TBAP on quantitation of superoxide using hydroethidine. Zielonka J; Vasquez-Vivar J; Kalyanaraman B Free Radic Biol Med; 2006 Oct; 41(7):1050-7. PubMed ID: 16962930 [TBL] [Abstract][Full Text] [Related]
16. The fluorescence detection of superoxide radical using hydroethidine could be complicated by the presence of heme proteins. Papapostolou I; Patsoukis N; Georgiou CD Anal Biochem; 2004 Sep; 332(2):290-8. PubMed ID: 15325298 [TBL] [Abstract][Full Text] [Related]
17. The diffusion-controlled reaction of semioxidized tryptophan with the superoxide radical anion. Santus R; Patterson LK; Bazin M Free Radic Biol Med; 1995 Dec; 19(6):837-42. PubMed ID: 8582656 [TBL] [Abstract][Full Text] [Related]
18. Role of the superoxide anion in the oxidative activation of the new antitumor drug BD40: a radiolysis study. Sekaki A; Gardes-Albert M; Houee-Levin C; Ferradini C; Rivalle C; Bisagni E; Croisy A; Hickel B Int J Radiat Biol; 1989 Jun; 55(6):901-11. PubMed ID: 2567329 [TBL] [Abstract][Full Text] [Related]
19. [Production of superoxide radicals with pulse radiolysis of water with high linear energy transfer]. Baldacchino G; Trupin-Wasselin V; Bouffard S; Balanzat E; Gardès-Albert M; Abedinzadeh Z; Jore D; Deycard S; Hickel B Can J Physiol Pharmacol; 2001 Feb; 79(2):180-3. PubMed ID: 11235673 [TBL] [Abstract][Full Text] [Related]
20. Interference of non-specific peroxidases in the fluorescence detection of superoxide radical by hydroethidine oxidation: a new assay for H2O2. Patsoukis N; Papapostolou I; Georgiou CD Anal Bioanal Chem; 2005 Mar; 381(5):1065-72. PubMed ID: 15690180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]