BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 17081495)

  • 1. Pulse radiolysis and steady-state analyses of the reaction between hydroethidine and superoxide and other oxidants.
    Zielonka J; Sarna T; Roberts JE; Wishart JF; Kalyanaraman B
    Arch Biochem Biophys; 2006 Dec; 456(1):39-47. PubMed ID: 17081495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide.
    Zhao H; Kalivendi S; Zhang H; Joseph J; Nithipatikom K; Vásquez-Vivar J; Kalyanaraman B
    Free Radic Biol Med; 2003 Jun; 34(11):1359-68. PubMed ID: 12757846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HPLC-based monitoring of products formed from hydroethidine-based fluorogenic probes--the ultimate approach for intra- and extracellular superoxide detection.
    Kalyanaraman B; Dranka BP; Hardy M; Michalski R; Zielonka J
    Biochim Biophys Acta; 2014 Feb; 1840(2):739-44. PubMed ID: 23668959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of carbon tetrachloride by modified Fenton's reagent.
    Teel AL; Watts RJ
    J Hazard Mater; 2002 Oct; 94(2):179-89. PubMed ID: 12169420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydropropidine: a novel, cell-impermeant fluorogenic probe for detecting extracellular superoxide.
    Michalski R; Zielonka J; Hardy M; Joseph J; Kalyanaraman B
    Free Radic Biol Med; 2013 Jan; 54():135-47. PubMed ID: 23051008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of hypotaurine and cysteine sulfinic acid toward carbonate radical anion and nitrogen dioxide as explored by the peroxidase activity of Cu,Zn superoxide dismutase and by pulse radiolysis.
    Baseggio Conrado A; D'Angelantonio M; Torreggiani A; Pecci L; Fontana M
    Free Radic Res; 2014 Nov; 48(11):1300-10. PubMed ID: 25156684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in detection of superoxide radical anion and hydrogen peroxide: Opportunities, challenges, and implications in redox signaling.
    Kalyanaraman B; Hardy M; Podsiadly R; Cheng G; Zielonka J
    Arch Biochem Biophys; 2017 Mar; 617():38-47. PubMed ID: 27590268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction of ferrate (VI)/ferrate (V) with hydrogen peroxide and superoxide anion--a stopped-flow and premix pulse radiolysis study.
    Rush JD; Zhao Z; Bielski BH
    Free Radic Res; 1996 Mar; 24(3):187-98. PubMed ID: 8728120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic similarities between oxidation of hydroethidine by Fremy's salt and superoxide: stopped-flow optical and EPR studies.
    Zielonka J; Zhao H; Xu Y; Kalyanaraman B
    Free Radic Biol Med; 2005 Oct; 39(7):853-63. PubMed ID: 16140206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and identification of oxidants formed during •NO/O2•⁻ reaction: a multi-well plate CW-EPR spectroscopy combined with HPLC analyses.
    Koto T; Michalski R; Zielonka J; Joseph J; Kalyanaraman B
    Free Radic Res; 2014 Apr; 48(4):478-86. PubMed ID: 24460755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth.
    Zielonka J; Kalyanaraman B
    Free Radic Biol Med; 2010 Apr; 48(8):983-1001. PubMed ID: 20116425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HPLC-Based Monitoring of Oxidation of Hydroethidine for the Detection of NADPH Oxidase-Derived Superoxide Radical Anion.
    Zielonka J; Zielonka M; Kalyanaraman B
    Methods Mol Biol; 2019; 1982():243-258. PubMed ID: 31172476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism for the destruction of carbon tetrachloride and chloroform DNAPLs by modified Fenton's reagent.
    Smith BA; Teel AL; Watts RJ
    J Contam Hydrol; 2006 May; 85(3-4):229-46. PubMed ID: 16546290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence.
    Zhao H; Joseph J; Fales HM; Sokoloski EA; Levine RL; Vasquez-Vivar J; Kalyanaraman B
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5727-32. PubMed ID: 15824309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The confounding effects of light, sonication, and Mn(III)TBAP on quantitation of superoxide using hydroethidine.
    Zielonka J; Vasquez-Vivar J; Kalyanaraman B
    Free Radic Biol Med; 2006 Oct; 41(7):1050-7. PubMed ID: 16962930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fluorescence detection of superoxide radical using hydroethidine could be complicated by the presence of heme proteins.
    Papapostolou I; Patsoukis N; Georgiou CD
    Anal Biochem; 2004 Sep; 332(2):290-8. PubMed ID: 15325298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The diffusion-controlled reaction of semioxidized tryptophan with the superoxide radical anion.
    Santus R; Patterson LK; Bazin M
    Free Radic Biol Med; 1995 Dec; 19(6):837-42. PubMed ID: 8582656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the superoxide anion in the oxidative activation of the new antitumor drug BD40: a radiolysis study.
    Sekaki A; Gardes-Albert M; Houee-Levin C; Ferradini C; Rivalle C; Bisagni E; Croisy A; Hickel B
    Int J Radiat Biol; 1989 Jun; 55(6):901-11. PubMed ID: 2567329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Production of superoxide radicals with pulse radiolysis of water with high linear energy transfer].
    Baldacchino G; Trupin-Wasselin V; Bouffard S; Balanzat E; Gardès-Albert M; Abedinzadeh Z; Jore D; Deycard S; Hickel B
    Can J Physiol Pharmacol; 2001 Feb; 79(2):180-3. PubMed ID: 11235673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interference of non-specific peroxidases in the fluorescence detection of superoxide radical by hydroethidine oxidation: a new assay for H2O2.
    Patsoukis N; Papapostolou I; Georgiou CD
    Anal Bioanal Chem; 2005 Mar; 381(5):1065-72. PubMed ID: 15690180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.