BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17081642)

  • 1. Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET.
    Ho YP; Chen HH; Leong KW; Wang TH
    J Control Release; 2006 Nov; 116(1):83-9. PubMed ID: 17081642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative comparison of intracellular unpacking kinetics of polyplexes by a model constructed from quantum dot-FRET.
    Chen HH; Ho YP; Jiang X; Mao HQ; Wang TH; Leong KW
    Mol Ther; 2008 Feb; 16(2):324-32. PubMed ID: 18180773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intercalating dye as an acceptor in quantum-dot-mediated FRET.
    Lim TC; Bailey VJ; Ho YP; Wang TH
    Nanotechnology; 2008 Feb; 19(7):075701. PubMed ID: 21817649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining QD-FRET and microfluidics to monitor DNA nanocomplex self-assembly in real-time.
    Ho YP; Chen HH; Leong KW; Wang TH
    J Vis Exp; 2009 Aug; (30):. PubMed ID: 19710626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Non-invasive Analysis of DNA Condensation and Stability by Two-step QD-FRET.
    Chen HH; Ho YP; Jiang X; Mao HQ; Wang TH; Leong KW
    Nano Today; 2009 Apr; 4(2):125-134. PubMed ID: 20161048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amphiphilic biodegradable PEG-PCL-PEI triblock copolymers for FRET-capable in vitro and in vivo delivery of siRNA and quantum dots.
    Endres T; Zheng M; Kılıç A; Turowska A; Beck-Broichsitter M; Renz H; Merkel OM; Kissel T
    Mol Pharm; 2014 Apr; 11(4):1273-81. PubMed ID: 24592902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and intracellular fate of multifunctional nanoparticles: a comparison between lipoplexes and polyplexes via quantum dot mediated Förster resonance energy transfer.
    Wu Y; Ho YP; Mao Y; Wang X; Yu B; Leong KW; Lee LJ
    Mol Pharm; 2011 Oct; 8(5):1662-8. PubMed ID: 21740056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-dot-assisted fluorescence resonance energy transfer approach for intracellular trafficking of chitosan/DNA complex.
    Lee JI; Ha KS; Yoo HS
    Acta Biomater; 2008 Jul; 4(4):791-8. PubMed ID: 18326480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular trafficking and unpacking of siRNA/quantum dot-PEI complexes modified with and without cell penetrating peptide: confocal and flow cytometric FRET analysis.
    Lee H; Kim IK; Park TG
    Bioconjug Chem; 2010 Feb; 21(2):289-95. PubMed ID: 20078095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FRET from quantum dots to photodecompose undesired acceptors and report the condensation and decondensation of plasmid DNA.
    Biju V; Anas A; Akita H; Shibu ES; Itoh T; Harashima H; Ishikawa M
    ACS Nano; 2012 May; 6(5):3776-88. PubMed ID: 22468986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellularly monitoring/imaging the release of doxorubicin from pH-responsive nanoparticles using Förster resonance energy transfer.
    Chen KJ; Chiu YL; Chen YM; Ho YC; Sung HW
    Biomaterials; 2011 Apr; 32(10):2586-92. PubMed ID: 21251711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red-Green-Blue Trichromophoric Nanoparticles with Dual Fluorescence Resonance Energy Transfer: Highly Sensitive Fluorogenic Response Toward Polyanions.
    Xu J; Takai A; Takeuchi M
    Chemistry; 2016 Sep; 22(37):13014-8. PubMed ID: 27487175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive detection of telomerase activity in cells using a DNA-based fluorescence resonance energy transfer nanoprobe.
    Yang G; Zhang Q; Ma L; Zheng Y; Tian F; Li H; Zhang P; Qu LL
    Anal Chim Acta; 2020 Feb; 1098():133-139. PubMed ID: 31948576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding nonviral nucleic acid delivery with quantum dot-FRET nanosensors.
    Grigsby CL; Ho YP; Leong KW
    Nanomedicine (Lond); 2012 Apr; 7(4):565-77. PubMed ID: 22471720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells.
    Grecco HE; Lidke KA; Heintzmann R; Lidke DS; Spagnuolo C; Martinez OE; Jares-Erijman EA; Jovin TM
    Microsc Res Tech; 2004 Nov; 65(4-5):169-79. PubMed ID: 15630694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence quenching of CdS quantum dots by 4-azetidinyl-7-nitrobenz-2-oxa-1,3-diazole: a mechanistic study.
    Santhosh K; Patra S; Soumya S; Khara DC; Samanta A
    Chemphyschem; 2011 Oct; 12(15):2735-41. PubMed ID: 22002891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of crosslinking agents on the transfection efficiency, cellular and intracellular processing of DNA/polymer nanocomplexes.
    Zheng H; Tang C; Yin C
    Biomaterials; 2013 Apr; 34(13):3479-88. PubMed ID: 23398884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.