These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17081642)

  • 21. Upconversion nanoparticle-based FRET system for study of siRNA in live cells.
    Jiang S; Zhang Y
    Langmuir; 2010 May; 26(9):6689-94. PubMed ID: 20073488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of water soluble quantum dots for monitoring carrier-DNA nanoparticles in plant cells.
    Wang Q; Chen J; Zhang H; Lu M; Qiu D; Wen Y; Kong Q
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2208-14. PubMed ID: 21449370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chitosan-modified poly(D,L-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing.
    Zeng P; Xu Y; Zeng C; Ren H; Peng M
    Int J Pharm; 2011 Aug; 415(1-2):259-66. PubMed ID: 21645597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitivity of time-resolved FRET bioassays.
    Wegner KD; Lanh PT; Jennings T; Oh E; Jain V; Fairclough SM; Smith JM; Giovanelli E; Lequeux N; Pons T; Hildebrandt N
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2881-92. PubMed ID: 23496235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A homogeneous immunosensor for AFB1 detection based on FRET between different-sized quantum dots.
    Xu W; Xiong Y; Lai W; Xu Y; Li C; Xie M
    Biosens Bioelectron; 2014 Jun; 56():144-50. PubMed ID: 24487101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic preparation of polymer-nucleic acid nanocomplexes improves nonviral gene transfer.
    Grigsby CL; Ho YP; Lin C; Engbersen JF; Leong KW
    Sci Rep; 2013 Nov; 3():3155. PubMed ID: 24193511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensing polymer/DNA polyplex dissociation using quantum dot fluorophores.
    Zhang B; Zhang Y; Mallapragada SK; Clapp AR
    ACS Nano; 2011 Jan; 5(1):129-38. PubMed ID: 21190373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A positively charged QDs-based FRET probe for micrococcal nuclease detection.
    Qiu T; Zhao D; Zhou G; Liang Y; He Z; Liu Z; Peng X; Zhou L
    Analyst; 2010 Sep; 135(9):2394-9. PubMed ID: 20676436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy.
    Kenworthy AK
    Methods; 2001 Jul; 24(3):289-96. PubMed ID: 11403577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembled quantum dot-sensitized multivalent DNA photonic wires.
    Boeneman K; Prasuhn DE; Blanco-Canosa JB; Dawson PE; Melinger JS; Ancona M; Stewart MH; Susumu K; Huston A; Medintz IL
    J Am Chem Soc; 2010 Dec; 132(51):18177-90. PubMed ID: 21141858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A quantum dot photoswitch for DNA detection, gene transfection, and live-cell imaging.
    Wu Y; Eisele K; Doroshenko M; Algara-Siller G; Kaiser U; Koynov K; Weil T
    Small; 2012 Nov; 8(22):3465-75. PubMed ID: 22915540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A pH-sensitive gene delivery system based on folic acid-PEG-chitosan - PAMAM-plasmid DNA complexes for cancer cell targeting.
    Wang M; Hu H; Sun Y; Qiu L; Zhang J; Guan G; Zhao X; Qiao M; Cheng L; Cheng L; Chen D
    Biomaterials; 2013 Dec; 34(38):10120-32. PubMed ID: 24094823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon.
    Ha HD; Han DJ; Choi JS; Park M; Seo TS
    Small; 2014 Oct; 10(19):3858-62. PubMed ID: 24976217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence resonance energy transfer: evaluation of the intracellular stability of polyplexes.
    Breunig M; Lungwitz U; Liebl R; Goepferich A
    Eur J Pharm Biopharm; 2006 Jun; 63(2):156-65. PubMed ID: 16527471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors.
    Vannoy CH; Chong L; Le C; Krull UJ
    Anal Chim Acta; 2013 Jan; 759():92-9. PubMed ID: 23260681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compact quantum dot probes for rapid and sensitive DNA detection using highly efficient fluorescence resonant energy transfer.
    Wu CS; Cupps JM; Fan X
    Nanotechnology; 2009 Jul; 20(30):305502. PubMed ID: 19581695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of hydrophobic and hydrophilic modifications on gene delivery of amphiphilic chitosan based nanocarriers.
    Wang B; He C; Tang C; Yin C
    Biomaterials; 2011 Jul; 32(20):4630-8. PubMed ID: 21440295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembly of bioactive peptide-chitosan nanocomplexes.
    Hu B; Wang SS; Li J; Zeng XX; Huang QR
    J Phys Chem B; 2011 Jun; 115(23):7515-23. PubMed ID: 21608974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of biocompatible polymeric nanoparticles for in vivo NIR and FRET imaging.
    Wagh A; Qian SY; Law B
    Bioconjug Chem; 2012 May; 23(5):981-92. PubMed ID: 22482883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.