BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17082256)

  • 1. Vasopressin autoreceptors and nitric oxide-dependent glutamate release are required for somatodendritic vasopressin release from rat magnocellular neuroendocrine cells responding to osmotic stimuli.
    Gillard ER; Coburn CG; de Leon A; Snissarenko EP; Bauce LG; Pittman QJ; Hou B; Currás-Collazo MC
    Endocrinology; 2007 Feb; 148(2):479-89. PubMed ID: 17082256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel role for endogenous pituitary adenylate cyclase activating polypeptide in the magnocellular neuroendocrine system.
    Gillard ER; León-Olea M; Mucio-Ramírez S; Coburn CG; Sánchez-Islas E; de Leon A; Mussenden H; Bauce LG; Pittman QJ; Currás-Collazo MC
    Endocrinology; 2006 Feb; 147(2):791-803. PubMed ID: 16282358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary exposure to aroclor 1254 alters central and peripheral vasopressin release in response to dehydration in the rat.
    Coburn CG; Gillard ER; Currás-Collazo MC
    Toxicol Sci; 2005 Mar; 84(1):149-56. PubMed ID: 15574674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vasopressin and oxytocin decrease excitatory amino acid release in adult rat supraoptic nucleus.
    Currás-Collazo MC; Gillard ER; Jin J; Pandika J
    J Neuroendocrinol; 2003 Feb; 15(2):182-90. PubMed ID: 12535160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal-derived nitric oxide and somatodendritically released vasopressin regulate neurovascular coupling in the rat hypothalamic supraoptic nucleus.
    Du W; Stern JE; Filosa JA
    J Neurosci; 2015 Apr; 35(13):5330-41. PubMed ID: 25834057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt loading abolishes osmotically stimulated vasopressin release within the supraoptic nucleus.
    Ludwig M; Williams K; Callahan MF; Morris M
    Neurosci Lett; 1996 Aug; 215(1):1-4. PubMed ID: 8880739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PACAP increases the cytosolic Ca2+ concentration and stimulates somatodendritic vasopressin release in rat supraoptic neurons.
    Shibuya I; Noguchi J; Tanaka K; Harayama N; Inoue U; Kabashima N; Ueta Y; Hattori Y; Yamashita H
    J Neuroendocrinol; 1998 Jan; 10(1):31-42. PubMed ID: 9510056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization and osmotic regulation of vesicular glutamate transporter-2 in magnocellular neurons of the rat hypothalamus.
    Hrabovszky E; Csapó AK; Kalló I; Wilheim T; Túri GF; Liposits Z
    Neurochem Int; 2006 Jun; 48(8):753-61. PubMed ID: 16481069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vesicular glutamate transporter expression in supraoptic neurones suggests a glutamatergic phenotype.
    Ponzio TA; Ni Y; Montana V; Parpura V; Hatton GI
    J Neuroendocrinol; 2006 Apr; 18(4):253-65. PubMed ID: 16503920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Baroreceptor input regulates osmotic control of central vasopressin secretion.
    Callahan MF; Ludwig M; Tsai KP; Sim LJ; Morris M
    Neuroendocrinology; 1997 Apr; 65(4):238-45. PubMed ID: 9142995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelin-mediated calcium responses in supraoptic nucleus astrocytes influence magnocellular neurosecretory firing activity.
    Filosa JA; Naskar K; Perfume G; Iddings JA; Biancardi VC; Vatta MS; Stern JE
    J Neuroendocrinol; 2012 Feb; 24(2):378-92. PubMed ID: 22007724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of non-NMDA receptors in osmotic and glutamate stimulation of vasopressin release: effect of rapid receptor desensitization.
    Sladek CD; Badre SE; Morsette DJ; Sidorowicz HE
    J Neuroendocrinol; 1998 Dec; 10(12):897-903. PubMed ID: 9870746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of tetrodotoxin on osmotically stimulated central and peripheral vasopressin and oxytocin release.
    Ludwig M; Callahan MF; Morris M
    Neuroendocrinology; 1995 Dec; 62(6):619-27. PubMed ID: 8751288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular sources, targets and actions of constitutive nitric oxide in the magnocellular neurosecretory system of the rat.
    Stern JE; Zhang W
    J Physiol; 2005 Feb; 562(Pt 3):725-44. PubMed ID: 15550458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural input modulates osmotically stimulated release of vasopressin into the supraoptic nucleus.
    Ludwig M; Callahan MF; Landgraf R; Johnson AK; Morris M
    Am J Physiol; 1996 May; 270(5 Pt 1):E787-92. PubMed ID: 8967466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The vasopressin receptors colocalize with vasopressin in the magnocellular neurons of the rat supraoptic nucleus and are modulated by water balance.
    Hurbin A; Orcel H; Alonso G; Moos F; Rabié A
    Endocrinology; 2002 Feb; 143(2):456-66. PubMed ID: 11796498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opposing actions of endothelin-1 on glutamatergic transmission onto vasopressin and oxytocin neurons in the supraoptic nucleus.
    Zampronio AR; Kuzmiski JB; Florence CM; Mulligan SJ; Pittman QJ
    J Neurosci; 2010 Dec; 30(50):16855-63. PubMed ID: 21159956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vasopressin from hypothalamic magnocellular neurons has opposite actions at the adenohypophysis and in the supraoptic nucleus on ACTH secretion.
    Wotjak CT; Ludwig M; Ebner K; Russell JA; Singewald N; Landgraf R; Engelmann M
    Eur J Neurosci; 2002 Aug; 16(3):477-85. PubMed ID: 12193191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunolabeling reveals cellular localization of the N-methyl-D-aspartate receptor subunit NR2B in neurosecretory cells but not astrocytes of the rat magnocellular nuclei.
    Currás-Collazo MC; Chin C; Díaz G; Stivers C; Bozzetti L; Tran LY
    J Comp Neurol; 2000 Nov; 427(1):93-108. PubMed ID: 11042593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polybrominated diphenyl ethers and ortho-substituted polychlorinated biphenyls as neuroendocrine disruptors of vasopressin release: effects during physiological activation in vitro and structure-activity relationships.
    Coburn CG; Currás-Collazo MC; Kodavanti PR
    Toxicol Sci; 2007 Jul; 98(1):178-86. PubMed ID: 17434953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.