These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17082366)

  • 1. Modulation of glucose transport in skeletal muscle by reactive oxygen species.
    Katz A
    J Appl Physiol (1985); 2007 Apr; 102(4):1671-6. PubMed ID: 17082366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of glycolysis and expression of glucose metabolism-related genes by reactive oxygen species in contracting skeletal muscle cells.
    Pinheiro CH; Silveira LR; Nachbar RT; Vitzel KF; Curi R
    Free Radic Biol Med; 2010 Apr; 48(7):953-60. PubMed ID: 20080177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skeletal muscle glucose uptake during exercise: a focus on reactive oxygen species and nitric oxide signaling.
    Merry TL; McConell GK
    IUBMB Life; 2009 May; 61(5):479-84. PubMed ID: 19391163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do reactive oxygen species regulate skeletal muscle glucose uptake during contraction?
    Merry TL; McConell GK
    Exerc Sport Sci Rev; 2012 Apr; 40(2):102-5. PubMed ID: 22183040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle.
    Sandström ME; Zhang SJ; Bruton J; Silva JP; Reid MB; Westerblad H; Katz A
    J Physiol; 2006 Aug; 575(Pt 1):251-62. PubMed ID: 16777943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contraction signaling to glucose transport in skeletal muscle.
    Jessen N; Goodyear LJ
    J Appl Physiol (1985); 2005 Jul; 99(1):330-7. PubMed ID: 16036906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise-induced increase in muscle insulin sensitivity.
    Holloszy JO
    J Appl Physiol (1985); 2005 Jul; 99(1):338-43. PubMed ID: 16036907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK.
    Merry TL; Steinberg GR; Lynch GS; McConell GK
    Am J Physiol Endocrinol Metab; 2010 Mar; 298(3):E577-85. PubMed ID: 20009026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The production of reactive oxygen and nitrogen species by skeletal muscle.
    Jackson MJ; Pye D; Palomero J
    J Appl Physiol (1985); 2007 Apr; 102(4):1664-70. PubMed ID: 17082364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle.
    Ryder JW; Chibalin AV; Zierath JR
    Acta Physiol Scand; 2001 Mar; 171(3):249-57. PubMed ID: 11412137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local hindlimb antioxidant infusion does not affect muscle glucose uptake during in situ contractions in rat.
    Merry TL; Dywer RM; Bradley EA; Rattigan S; McConell GK
    J Appl Physiol (1985); 2010 May; 108(5):1275-83. PubMed ID: 20203065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of glucose transport and AMP-activated protein kinase during muscle contraction in adenylate kinase-1 knockout mice.
    Zhang SJ; Sandström ME; Aydin J; Westerblad H; Wieringa B; Katz A
    Acta Physiol (Oxf); 2008 Mar; 192(3):413-20. PubMed ID: 17973952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α2 isoform-specific activation of 5'adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle.
    Nakano M; Hamada T; Hayashi T; Yonemitsu S; Miyamoto L; Toyoda T; Tanaka S; Masuzaki H; Ebihara K; Ogawa Y; Hosoda K; Inoue G; Yoshimasa Y; Otaka A; Fushiki T; Nakao K
    Metabolism; 2006 Mar; 55(3):300-8. PubMed ID: 16483872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of calcineurin activation on insulin-, AICAR- and contraction-induced glucose transport in skeletal muscle.
    Ryder JW; Long YC; Nilsson E; Mahlapuu M; Zierath JR
    J Physiol; 2005 Sep; 567(Pt 2):379-86. PubMed ID: 15975979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine acutely activates 5'adenosine monophosphate-activated protein kinase and increases insulin-independent glucose transport in rat skeletal muscles.
    Egawa T; Hamada T; Kameda N; Karaike K; Ma X; Masuda S; Iwanaka N; Hayashi T
    Metabolism; 2009 Nov; 58(11):1609-17. PubMed ID: 19608206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle.
    Ai H; Ihlemann J; Hellsten Y; Lauritzen HP; Hardie DG; Galbo H; Ploug T
    Am J Physiol Endocrinol Metab; 2002 Jun; 282(6):E1291-300. PubMed ID: 12006359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical load plays little role in contraction-mediated glucose transport in mouse skeletal muscle.
    Sandström ME; Zhang SJ; Westerblad H; Katz A
    J Physiol; 2007 Mar; 579(Pt 2):527-34. PubMed ID: 17185338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose phosphorylation is/is not a significant barrier to muscle glucose uptake by the working muscle.
    Richter EA; Rose A; Wojtaszewski JF; Hargreaves M
    J Appl Physiol (1985); 2006 Dec; 101(6):1809; author reply 1810-1. PubMed ID: 17106072
    [No Abstract]   [Full Text] [Related]  

  • 19. Point-Counterpoint: Glucose phosphorylation is/is not a significant barrier to muscle glucose uptake by the working muscle.
    Wasserman DH; Fueger PT
    J Appl Physiol (1985); 2006 Dec; 101(6):1803-5. PubMed ID: 17106068
    [No Abstract]   [Full Text] [Related]  

  • 20. Invited review: Regulation of skeletal muscle GLUT-4 expression by exercise.
    Dohm GL
    J Appl Physiol (1985); 2002 Aug; 93(2):782-7. PubMed ID: 12133892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.