BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17083089)

  • 1. Spatial and spectral heterogeneity of time-varying shear stress profiles in the carotid bifurcation by phase-contrast MRI.
    Gelfand BD; Epstein FH; Blackman BR
    J Magn Reson Imaging; 2006 Dec; 24(6):1386-92. PubMed ID: 17083089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation.
    Younis HF; Kaazempur-Mofrad MR; Chan RC; Isasi AG; Hinton DP; Chau AH; Kim LA; Kamm RD
    Biomech Model Mechanobiol; 2004 Sep; 3(1):17-32. PubMed ID: 15300454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wall shear rates differ between the normal carotid, femoral, and brachial arteries: an in vivo MRI study.
    Wu SP; Ringgaard S; Oyre S; Hansen MS; Rasmus S; Pedersen EM
    J Magn Reson Imaging; 2004 Feb; 19(2):188-93. PubMed ID: 14745752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary study of hemodynamics in human carotid bifurcation by computational fluid dynamics combined with magnetic resonance angiography.
    Xue Y; Gao P; Lin Y; Dai C
    Acta Radiol; 2007 Sep; 48(7):788-97. PubMed ID: 17729012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models.
    Marshall I; Zhao S; Papathanasopoulou P; Hoskins P; Xu Y
    J Biomech; 2004 May; 37(5):679-87. PubMed ID: 15046997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional phase contrast velocity mapping acquisition improves wall shear stress estimation in vivo.
    Wu SP; Ringgaard S; Pedersen EM
    Magn Reson Imaging; 2004 Apr; 22(3):345-51. PubMed ID: 15062929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive determination of spatial distribution and temporal gradient of wall shear stress at common carotid artery.
    Sui B; Gao P; Lin Y; Qin H; Liu L; Liu G
    J Biomech; 2008 Oct; 41(14):3024-30. PubMed ID: 18805528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow patterns and wall shear stress distribution in human internal carotid arteries: the geometric effect on the risk for stenoses.
    Zhang C; Xie S; Li S; Pu F; Deng X; Fan Y; Li D
    J Biomech; 2012 Jan; 45(1):83-9. PubMed ID: 22079384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. shear analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5781-95. PubMed ID: 18824787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI.
    Frydrychowicz A; Stalder AF; Russe MF; Bock J; Bauer S; Harloff A; Berger A; Langer M; Hennig J; Markl M
    J Magn Reson Imaging; 2009 Jul; 30(1):77-84. PubMed ID: 19557849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of wall shear stress in the common carotid artery of healthy subjects using 3.0-tesla magnetic resonance.
    Sui B; Gao P; Lin Y; Gao B; Liu L; An J
    Acta Radiol; 2008 May; 49(4):442-9. PubMed ID: 18415789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo wall shear stress distribution in the carotid artery: effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy.
    Markl M; Wegent F; Zech T; Bauer S; Strecker C; Schumacher M; Weiller C; Hennig J; Harloff A
    Circ Cardiovasc Imaging; 2010 Nov; 3(6):647-55. PubMed ID: 20847189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow?
    Moyle KR; Antiga L; Steinman DA
    J Biomech Eng; 2006 Jun; 128(3):371-9. PubMed ID: 16706586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of systolic and diastolic arterial wall shear stress in the ascending aorta.
    Efstathopoulos EP; Patatoukas G; Pantos I; Benekos O; Katritsis D; Kelekis NL
    Phys Med; 2008 Dec; 24(4):196-203. PubMed ID: 18343178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. model and velocity analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5767-79. PubMed ID: 18824786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of wall shear rate in the human carotid artery by magnetic resonance techniques.
    Stokholm R; Oyre S; Ringgaard S; Flaagoy H; Paaske WP; Pedersen EM
    Eur J Vasc Endovasc Surg; 2000 Nov; 20(5):427-33. PubMed ID: 11112460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses.
    O'Keeffe LM; Muir G; Piterina AV; McGloughlin T
    J Biomech Eng; 2009 Aug; 131(8):081003. PubMed ID: 19604015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of flip angle on volume flow measurement with nontriggered phase-contrast MR: In vivo evaluation in carotid and basilar arteries.
    Tanaka H; Fujita N; Takahashi H; Sakai M; Nagao T; Murase K; Nakamura H
    J Magn Reson Imaging; 2009 May; 29(5):1218-23. PubMed ID: 19388100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Particle image velocimetry in measuring the flow fields distribution in carotid artery bifurcation model].
    Yu F; Shi Y; Deng W; Chen H; An Q; Guo Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):104-9. PubMed ID: 17333901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.