These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 17083215)
1. Iron-only hydrogenase mimics. Thermodynamic aspects of the use of electrochemistry to evaluate catalytic efficiency for hydrogen generation. Felton GA; Glass RS; Lichtenberger DL; Evans DH Inorg Chem; 2006 Nov; 45(23):9181-4. PubMed ID: 17083215 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials. Surawatanawong P; Tye JW; Darensbourg MY; Hall MB Dalton Trans; 2010 Mar; 39(12):3093-104. PubMed ID: 20221544 [TBL] [Abstract][Full Text] [Related]
3. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen generation from weak acids: electrochemical and computational studies of a diiron hydrogenase mimic. Felton GA; Vannucci AK; Chen J; Lockett LT; Okumura N; Petro BJ; Zakai UI; Evans DH; Glass RS; Lichtenberger DL J Am Chem Soc; 2007 Oct; 129(41):12521-30. PubMed ID: 17894491 [TBL] [Abstract][Full Text] [Related]
5. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics. Wang M; Chen L; Li X; Sun L Dalton Trans; 2011 Dec; 40(48):12793-800. PubMed ID: 21983599 [TBL] [Abstract][Full Text] [Related]
6. The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: iron hydrogenase model complexes. Mejia-Rodriguez R; Chong D; Reibenspies JH; Soriaga MP; Darensbourg MY J Am Chem Soc; 2004 Sep; 126(38):12004-14. PubMed ID: 15382935 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of the H-cluster framework of iron-only hydrogenase. Tard C; Liu X; Ibrahim SK; Bruschi M; De Gioia L; Davies SC; Yang X; Wang LS; Sawers G; Pickett CJ Nature; 2005 Feb; 433(7026):610-3. PubMed ID: 15703741 [TBL] [Abstract][Full Text] [Related]
8. Facile synthesis and functionality-dependent electrochemistry of Fe-only hydrogenase mimics. Si G; Wang WG; Wang HY; Tung CH; Wu LZ Inorg Chem; 2008 Sep; 47(18):8101-11. PubMed ID: 18710214 [TBL] [Abstract][Full Text] [Related]
9. [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell. Hambourger M; Gervaldo M; Svedruzic D; King PW; Gust D; Ghirardi M; Moore AL; Moore TA J Am Chem Soc; 2008 Feb; 130(6):2015-22. PubMed ID: 18205358 [TBL] [Abstract][Full Text] [Related]
10. Synthetic chemistry: making a natural fuel cell. Darensbourg MY Nature; 2005 Feb; 433(7026):589-91. PubMed ID: 15703733 [No Abstract] [Full Text] [Related]
11. Density functional study of the thermodynamics of hydrogen production by tetrairon hexathiolate, Fe4[MeC(CH2S)3]2(CO)8, a hydrogenase model. Surawatanawong P; Hall MB Inorg Chem; 2010 Jun; 49(12):5737-47. PubMed ID: 20481518 [TBL] [Abstract][Full Text] [Related]
12. Direct electrochemical study of the multiple redox centers of hydrogenase from Desulfovibrio gigas. Cordas CM; Moura I; Moura JJ Bioelectrochemistry; 2008 Nov; 74(1):83-9. PubMed ID: 18632311 [TBL] [Abstract][Full Text] [Related]
13. Diiron dithiolate complexes containing intra-ligand NH ... S hydrogen bonds: [FeFe] hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential. Yu Z; Wang M; Li P; Dong W; Wang F; Sun L Dalton Trans; 2008 May; (18):2400-6. PubMed ID: 18461194 [TBL] [Abstract][Full Text] [Related]
14. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Le Goff A; Artero V; Jousselme B; Tran PD; Guillet N; Métayé R; Fihri A; Palacin S; Fontecave M Science; 2009 Dec; 326(5958):1384-7. PubMed ID: 19965754 [TBL] [Abstract][Full Text] [Related]
15. Proton reduction to hydrogen in biological and chemical systems. Tran PD; Barber J Phys Chem Chem Phys; 2012 Oct; 14(40):13772-84. PubMed ID: 22965001 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen cycling by enzymes: electrocatalysis and implications for future energy technology. Vincent KA; Cracknell JA; Parkin A; Armstrong FA Dalton Trans; 2005 Nov; (21):3397-403. PubMed ID: 16234917 [TBL] [Abstract][Full Text] [Related]
17. Induction of a proton gradient across a gold-supported biomimetic membrane by electroenzymatic H2 oxidation. Gutiérrez-Sanz Ó; Tapia C; Marques MC; Zacarias S; Vélez M; Pereira IA; De Lacey AL Angew Chem Int Ed Engl; 2015 Feb; 54(9):2684-7. PubMed ID: 25600156 [TBL] [Abstract][Full Text] [Related]
18. Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. De Lacey AL; Fernandez VM; Rousset M; Cammack R Chem Rev; 2007 Oct; 107(10):4304-30. PubMed ID: 17715982 [No Abstract] [Full Text] [Related]
19. Immobilization of the [FeFe]-hydrogenase CrHydA1 on a gold electrode: design of a catalytic surface for the production of molecular hydrogen. Krassen H; Stripp S; von Abendroth G; Ataka K; Happe T; Heberle J J Biotechnol; 2009 Jun; 142(1):3-9. PubMed ID: 19480942 [TBL] [Abstract][Full Text] [Related]
20. Catalytic hydrogen production by a Ni-Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step. Canaguier S; Fourmond V; Perotto CU; Fize J; Pécaut J; Fontecave M; Field MJ; Artero V Chem Commun (Camb); 2013 Jun; 49(44):5004-6. PubMed ID: 23612503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]