BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17083675)

  • 1. Regulation of oil accumulation in single glands of Eucalyptus polybractea.
    King DJ; Gleadow RM; Woodrow IE
    New Phytol; 2006; 172(3):440-51. PubMed ID: 17083675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential metabolic specialization of foliar oil glands in Eucalyptus brevistylis Brooker (Myrtaceae).
    Goodger JQD; Senaratne SL; Nicolle D; Woodrow IE
    Tree Physiol; 2018 Oct; 38(10):1451-1460. PubMed ID: 30032311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High marker density GWAS provides novel insights into the genomic architecture of terpene oil yield in Eucalyptus.
    Kainer D; Padovan A; Degenhardt J; Krause S; Mondal P; Foley WJ; Külheim C
    New Phytol; 2019 Aug; 223(3):1489-1504. PubMed ID: 31066055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of Genomic Prediction for Foliar Terpene Traits in
    Kainer D; Stone EA; Padovan A; Foley WJ; Külheim C
    G3 (Bethesda); 2018 Jul; 8(8):2573-2583. PubMed ID: 29891736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terpene deployment in Eucalyptus polybractea; relationships with leaf structure, environmental stresses, and growth.
    King DJ; Gleadow RM; Woodrow IE
    Funct Plant Biol; 2004 Jun; 31(5):451-460. PubMed ID: 32688917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of micropropagation on growth and coppicing ability of Eucalyptus polybractea.
    Goodger JQ; Woodrow IE
    Tree Physiol; 2010 Feb; 30(2):285-96. PubMed ID: 20022865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The accumulation of terpenoid oils does not incur a growth cost in Eucalyptus polybractea seedlings.
    King DJ; Gleadow RM; Woodrow IE
    Funct Plant Biol; 2006 May; 33(5):497-505. PubMed ID: 32689256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of essential oil glands of clary sage (Salvia sclarea L., Lamiaceae).
    Schmiderer C; Grassi P; Novak J; Weber M; Franz C
    Plant Biol (Stuttg); 2008 Jul; 10(4):433-40. PubMed ID: 18557903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthesis within isobilateral Eucalyptus pauciflora leaves.
    Evans JR; Vogelmann TC
    New Phytol; 2006; 171(4):771-82. PubMed ID: 16918548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-volatile components of the essential oil secretory cavities of Eucalyptus leaves: discovery of two glucose monoterpene esters, cuniloside B and froggattiside A.
    Goodger JQD; Cao B; Jayadi I; Williams SJ; Woodrow IE
    Phytochemistry; 2009 Jun; 70(9):1187-1194. PubMed ID: 19604527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in shoot and root terpenoid profiles and plant responses to fertilisation in Tanacetum vulgare.
    Kleine S; Müller C
    Phytochemistry; 2013 Dec; 96():123-31. PubMed ID: 24128753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species.
    Cheng SS; Huang CG; Chen YJ; Yu JJ; Chen WJ; Chang ST
    Bioresour Technol; 2009 Jan; 100(1):452-6. PubMed ID: 18396398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Esterification of bio-oil from mallee (Eucalyptus loxophleba ssp. gratiae) leaves with a solid acid catalyst: Conversion of the cyclic ether and terpenoids into hydrocarbons.
    Hu X; Gunawan R; Mourant D; Wang Y; Lievens C; Chaiwat W; Wu L; Li CZ
    Bioresour Technol; 2012 Nov; 123():249-55. PubMed ID: 22940326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Population divergence in the ontogenetic trajectories of foliar terpenes of a Eucalyptus species.
    Borzak CL; Potts BM; Davies NW; O'Reilly-Wapstra JM
    Ann Bot; 2015 Jan; 115(1):159-70. PubMed ID: 25434028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interspecies comparative features of trichomes in Ocimum reveal insights for biosynthesis of specialized essential oil metabolites.
    Maurya S; Chandra M; Yadav RK; Narnoliya LK; Sangwan RS; Bansal S; Sandhu P; Singh U; Kumar D; Sangwan NS
    Protoplasma; 2019 Jul; 256(4):893-907. PubMed ID: 30656458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ovicidal and adulticidal activity of Eucalyptus globulus leaf oil terpenoids against Pediculus humanus capitis (Anoplura: Pediculidae).
    Yang YC; Choi HY; Choi WS; Clark JM; Ahn YJ
    J Agric Food Chem; 2004 May; 52(9):2507-11. PubMed ID: 15113148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora.
    Chen C; Zheng Y; Zhong Y; Wu Y; Li Z; Xu LA; Xu M
    BMC Genomics; 2018 Jul; 19(1):550. PubMed ID: 30041601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of juvenile and adult leaves of Eucalyptus globulus showing distinct heteroblastic development: photosynthesis and volatile isoprenoids.
    Velikova V; Loreto F; Brilli F; Stefanov D; Yordanov I
    Plant Biol (Stuttg); 2008 Jan; 10(1):55-64. PubMed ID: 18211547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A water availability gradient reveals the deficit level required to affect traits in potted juvenile Eucalyptus globulus.
    McKiernan AB; Potts BM; Hovenden MJ; Brodribb TJ; Davies NW; Rodemann T; McAdam SAM; O'Reilly-Wapstra JM
    Ann Bot; 2017 Apr; 119(6):1043-1052. PubMed ID: 28073772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia.
    Schulze ED; Turner NC; Nicolle D; Schumacher J
    Tree Physiol; 2006 Apr; 26(4):479-92. PubMed ID: 16414927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.