BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17083918)

  • 1. Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane.
    Hayashi M; Shimada Y; Inomata M; Ohno-Iwashita Y
    Biochem Biophys Res Commun; 2006 Dec; 351(3):713-8. PubMed ID: 17083918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts).
    Waheed AA; Shimada Y; Heijnen HF; Nakamura M; Inomata M; Hayashi M; Iwashita S; Slot JW; Ohno-Iwashita Y
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4926-31. PubMed ID: 11309501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perfringolysin O, a cholesterol-binding cytolysin, as a probe for lipid rafts.
    Ohno-Iwashita Y; Shimada Y; Waheed AA; Hayashi M; Inomata M; Nakamura M; Maruya M; Iwashita S
    Anaerobe; 2004 Apr; 10(2):125-34. PubMed ID: 16701509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lysophospholipids prevent binding of a cytolytic protein ostreolysin to cholesterol-enriched membrane domains.
    Chowdhury HH; Rebolj K; Kreft M; Zorec R; Macek P; Sepcić K
    Toxicon; 2008 Jun; 51(8):1345-56. PubMed ID: 18455213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol sensitivity of endogenous and myristoylated Akt.
    Adam RM; Mukhopadhyay NK; Kim J; Di Vizio D; Cinar B; Boucher K; Solomon KR; Freeman MR
    Cancer Res; 2007 Jul; 67(13):6238-46. PubMed ID: 17616681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization.
    Ohno-Iwashita Y; Shimada Y; Hayashi M; Iwamoto M; Iwashita S; Inomata M
    Subcell Biochem; 2010; 51():597-621. PubMed ID: 20213560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid binding activity of a neuron-specific protein NAP-22 studied in vivo and in vitro.
    Terashita A; Funatsu N; Umeda M; Shimada Y; Ohno-Iwashita Y; Epand RM; Maekawa S
    J Neurosci Res; 2002 Oct; 70(2):172-9. PubMed ID: 12271466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct visualization of Ras proteins in spatially distinct cell surface microdomains.
    Prior IA; Muncke C; Parton RG; Hancock JF
    J Cell Biol; 2003 Jan; 160(2):165-70. PubMed ID: 12527752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of NAP-22, a calmodulin-binding neuronal protein, to raft-like domains in model membranes.
    Khan TK; Yang B; Thompson NL; Maekawa S; Epand RM; Jacobson K
    Biochemistry; 2003 May; 42(17):4780-6. PubMed ID: 12718518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycine transporter 1 associates with cholesterol-rich membrane raft microdomains.
    Liu X; Mitrovic AD; Vandenberg RJ
    Biochem Biophys Res Commun; 2009 Jul; 384(4):530-4. PubMed ID: 19427831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins.
    Heuck AP; Moe PC; Johnson BB
    Subcell Biochem; 2010; 51():551-77. PubMed ID: 20213558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphotropic murine leukaemia virus envelope protein is associated with cholesterol-rich microdomains.
    Beer C; Pedersen L; Wirth M
    Virol J; 2005 Apr; 2():36. PubMed ID: 15840168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains.
    Shimada Y; Maruya M; Iwashita S; Ohno-Iwashita Y
    Eur J Biochem; 2002 Dec; 269(24):6195-203. PubMed ID: 12473115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic membrane proteins form stable microdomains in early endosomes.
    Geumann U; Schäfer C; Riedel D; Jahn R; Rizzoli SO
    Microsc Res Tech; 2010 Jun; 73(6):606-17. PubMed ID: 19937745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ostreolysin, a pore-forming protein from the oyster mushroom, interacts specifically with membrane cholesterol-rich lipid domains.
    Sepcić K; Berne S; Rebolj K; Batista U; Plemenitas A; Sentjurc M; Macek P
    FEBS Lett; 2004 Sep; 575(1-3):81-5. PubMed ID: 15388337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid raft-dependent targeting of the influenza A virus nucleoprotein to the apical plasma membrane.
    Carrasco M; Amorim MJ; Digard P
    Traffic; 2004 Dec; 5(12):979-92. PubMed ID: 15522099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholesterol reporter molecules.
    Gimpl G; Gehrig-Burger K
    Biosci Rep; 2007 Dec; 27(6):335-58. PubMed ID: 17668316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raft localization of CXCR4 is primarily required for X4-tropic human immunodeficiency virus type 1 infection.
    Kamiyama H; Yoshii H; Tanaka Y; Sato H; Yamamoto N; Kubo Y
    Virology; 2009 Mar; 386(1):23-31. PubMed ID: 19178925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The prion protein requires cholesterol for cell surface localization.
    Gilch S; Kehler C; Schätzl HM
    Mol Cell Neurosci; 2006 Feb; 31(2):346-53. PubMed ID: 16278084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol content drives distinct pharmacological behaviours of micro-opioid receptor in different microdomains of the CHO plasma membrane.
    Gaibelet G; Millot C; Lebrun C; Ravault S; Sauliere A; Andre A; Lagane B; Lopez A
    Mol Membr Biol; 2008 Aug; 25(5):423-35. PubMed ID: 18651319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.