BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17083967)

  • 1. Both trivalent and hexavalent chromium strongly alter in vitro germination and ultrastructure of kiwifruit pollen.
    Speranza A; Ferri P; Battistelli M; Falcieri E; Crinelli R; Scoccianti V
    Chemosphere; 2007 Jan; 66(7):1165-74. PubMed ID: 17083967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro toxicity towards kiwifruit pollen of the antimicrobial peptides magainins 1 and 2.
    Speranza AM; Taddei AR; Ovidi E
    Plant Biol (Stuttg); 2007 Nov; 9(6):800-6. PubMed ID: 17564946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Species-dependent chromium accumulation, lipid peroxidation, and glutathione levels in germinating kiwifruit pollen under Cr(III) and Cr(VI) stress.
    Scoccianti V; Iacobucci M; Paoletti MF; Fraternale A; Speranza A
    Chemosphere; 2008 Oct; 73(7):1042-8. PubMed ID: 18790514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cell wall of kiwifruit pollen tubes is a target for chromium toxicity: alterations to morphology, callose pattern and arabinogalactan protein distribution.
    Speranza A; Taddei AR; Gambellini G; Ovidi E; Scoccianti V
    Plant Biol (Stuttg); 2009 Mar; 11(2):179-93. PubMed ID: 19228325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The environmental endocrine disruptor, bisphenol A, affects germination, elicits stress response and alters steroid hormone production in kiwifruit pollen.
    Speranza A; Crosti P; Malerba M; Stocchi O; Scoccianti V
    Plant Biol (Stuttg); 2011 Jan; 13(1):209-17. PubMed ID: 21143743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II).
    Speranza A; Leopold K; Maier M; Taddei AR; Scoccianti V
    Environ Pollut; 2010 Mar; 158(3):873-82. PubMed ID: 19815321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Over-accumulation of putrescine induced by cyclohexylamine interferes with chromium accumulation and partially restores pollen tube growth in Actinidia deliciosa.
    Scoccianti V; Iacobucci M; Speranza A; Antognoni F
    Plant Physiol Biochem; 2013 Sep; 70():424-32. PubMed ID: 23835360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations on the nephrotoxicity and hepatotoxicity of trivalent and hexavalent chromium compounds.
    Dartsch PC; Hildenbrand S; Kimmel R; Schmahl FW
    Int Arch Occup Environ Health; 1998 Sep; 71 Suppl():S40-5. PubMed ID: 9827879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium toxicity in plants.
    Shanker AK; Cervantes C; Loza-Tavera H; Avudainayagam S
    Environ Int; 2005 Jul; 31(5):739-53. PubMed ID: 15878200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bis(guanylhydrazones) negatively affect in vitro germination of kiwifruit pollen and alter the endogenous polyamine pool.
    Antognoni F; Bagni N
    Plant Biol (Stuttg); 2008 May; 10(3):334-41. PubMed ID: 18426480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic changes and molecular effects associated with Cr(III) and Cr(VI) treatments on germinating kiwifruit pollen.
    Vannini C; Domingo G; Marsoni M; Bracale M; Sestili S; Ficcadenti N; Speranza A; Crinelli R; Carloni E; Scoccianti V
    Phytochemistry; 2011 Oct; 72(14-15):1786-95. PubMed ID: 21708391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species are involved in pollen tube initiation in kiwifruit.
    Speranza A; Crinelli R; Scoccianti V; Geitmann A
    Plant Biol (Stuttg); 2012 Jan; 14(1):64-76. PubMed ID: 21973108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of nonmutagenic Cr(III)-DNA interactions.
    Blankert SA; Coryell VH; Picard BT; Wolf KK; Lomas RE; Stearns DM
    Chem Res Toxicol; 2003 Jul; 16(7):847-54. PubMed ID: 12870887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release.
    Speranza A; Crinelli R; Scoccianti V; Taddei AR; Iacobucci M; Bhattacharya P; Ke PC
    Environ Pollut; 2013 Aug; 179():258-67. PubMed ID: 23702492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of pollen germination and tube growth to cadmium with special reference to low concentration exposure.
    Xiong ZT; Peng YH
    Ecotoxicol Environ Saf; 2001 Jan; 48(1):51-5. PubMed ID: 11161677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chromium(III and VI) on spring barley and maize biomass yield and content of nitrogenous compounds.
    Wyszkowski M; Radziemska M
    J Toxicol Environ Health A; 2010; 73(17-18):1274-82. PubMed ID: 20706953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of bacterial resistance to chromium compounds.
    Ramírez-Díaz MI; Díaz-Pérez C; Vargas E; Riveros-Rosas H; Campos-García J; Cervantes C
    Biometals; 2008 Jun; 21(3):321-32. PubMed ID: 17934697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo and in vitro effects of chromium VI on anterior pituitary hormone release and cell viability.
    Quinteros FA; Poliandri AH; Machiavelli LI; Cabilla JP; Duvilanski BH
    Toxicol Appl Pharmacol; 2007 Jan; 218(1):79-87. PubMed ID: 17141818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cr(III) exerts stronger structural effects than Cr(VI) on the human erythrocyte membrane and molecular models.
    Suwalsky M; Castro R; Villena F; Sotomayor CP
    J Inorg Biochem; 2008 Apr; 102(4):842-9. PubMed ID: 18234343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants.
    López-Luna J; González-Chávez MC; Esparza-García FJ; Rodríguez-Vázquez R
    J Hazard Mater; 2009 Apr; 163(2-3):829-34. PubMed ID: 18814962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.