BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17083982)

  • 1. Spike detection in human muscle sympathetic nerve activity using the kurtosis of stationary wavelet transform coefficients.
    Brychta RJ; Shiavi R; Robertson D; Diedrich A
    J Neurosci Methods; 2007 Mar; 160(2):359-67. PubMed ID: 17083982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges and opportunities in processing muscle sympathetic nerve activity with wavelet denoising techniques: detecting single action potentials in multiunit sympathetic nerve recordings in humans.
    Zhang Q; Liu Y; Brown L; Shoemaker JK
    Auton Neurosci; 2007 Jul; 134(1-2):92-105. PubMed ID: 17412648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance analysis of stationary and discrete wavelet transform for action potential detection from sympathetic nerve recordings in humans.
    Salmanpour A; Brown LJ; Shoemaker JK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2932-5. PubMed ID: 19163320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of raw microneurographic recordings based on wavelet de-noising technique and classification algorithm: wavelet analysis in microneurography.
    Diedrich A; Charoensuk W; Brychta RJ; Ertl AC; Shiavi R
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):41-50. PubMed ID: 12617523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike detection in human muscle sympathetic nerve activity using a matched wavelet approach.
    Salmanpour A; Brown LJ; Shoemaker JK
    J Neurosci Methods; 2010 Nov; 193(2):343-55. PubMed ID: 20831884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelet methods for spike detection in mouse renal sympathetic nerve activity.
    Brychta RJ; Tuntrakool S; Appalsamy M; Keller NR; Robertson D; Shiavi RG; Diedrich A
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):82-93. PubMed ID: 17260859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and classification of raw action potential patterns in human Muscle Sympathetic Nerve Activity.
    Salmanpour A; Brown LJ; Shoemaker JK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2928-31. PubMed ID: 19163319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the firing patterns of human postganglionic sympathetic neurones and spinal alpha motoneurones during brief bursts.
    Macefield VG; Elam M
    Exp Physiol; 2004 Jan; 89(1):82-8. PubMed ID: 15109213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike rate of multi-unit muscle sympathetic nerve fibers after catheter-based renal nerve ablation.
    Tank J; Heusser K; Brinkmann J; Schmidt BM; Menne J; Bauersachs J; Haller H; Diedrich A; Jordan J
    J Am Soc Hypertens; 2015 Oct; 9(10):794-801. PubMed ID: 26324745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A criterion for signal-based selection of wavelets for denoising intrafascicular nerve recordings.
    Kamavuako EN; Jensen W; Yoshida K; Kurstjens M; Farina D
    J Neurosci Methods; 2010 Feb; 186(2):274-80. PubMed ID: 19962403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the paravertebral ganglia in human sympathetic neural discharge patterns.
    Klassen SA; Limberg JK; Baker SE; Nicholson WT; Curry TB; Joyner MJ; Shoemaker JK
    J Physiol; 2018 Sep; 596(18):4497-4510. PubMed ID: 30054928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multiscale correlation of wavelet coefficients approach to spike detection.
    Yang C; Olson B; Si J
    Neural Comput; 2011 Jan; 23(1):215-50. PubMed ID: 20964544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Threshold Neural Spike Detector Using Stationary Wavelet Transform in CMOS.
    Yang Y; Boling CS; Kamboh AM; Mason AJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):946-55. PubMed ID: 25955990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for spike sorting and detection based on wavelet packets and Shannon's mutual information.
    Hulata E; Segev R; Ben-Jacob E
    J Neurosci Methods; 2002 May; 117(1):1-12. PubMed ID: 12084559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Firing properties of single vasoconstrictor neurones in human subjects with high levels of muscle sympathetic activity.
    Macefield VG; Wallin BG
    J Physiol; 1999 Apr; 516 ( Pt 1)(Pt 1):293-301. PubMed ID: 10066942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stationary wavelet transform and a time-frequency based spike detection algorithm for extracellular recorded data.
    Lieb F; Stark HG; Thielemann C
    J Neural Eng; 2017 Jun; 14(3):036013. PubMed ID: 28272020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stationary wavelet transform and higher order statistical analyses of intrafascicular nerve recordings.
    Qiao S; Torkamani-Azar M; Salama P; Yoshida K
    J Neural Eng; 2012 Oct; 9(5):056014. PubMed ID: 23010694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of short-term vestibular modulation of muscle sympathetic outflow, assessed by brief galvanic vestibular stimulation in awake human subjects.
    Bolton PS; Wardman DL; Macefield VG
    Exp Brain Res; 2004 Jan; 154(1):39-43. PubMed ID: 14504857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between size and latency of action potentials in human muscle sympathetic nerve activity.
    Salmanpour A; Brown LJ; Steinback CD; Usselman CW; Goswami R; Shoemaker JK
    J Neurophysiol; 2011 Jun; 105(6):2830-42. PubMed ID: 21430271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implantable neural spike detection using lifting-based stationary wavelet transform.
    Yang Y; Mason AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7294-7. PubMed ID: 22256023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.