BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

865 related articles for article (PubMed ID: 17084049)

  • 1. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles.
    Kranz H; Bodmeier R
    Eur J Pharm Sci; 2008 Jul; 34(2-3):164-72. PubMed ID: 18501569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ forming microparticle system for controlled delivery of leuprolide acetate: influence of the formulation and processing parameters.
    Luan X; Bodmeier R
    Eur J Pharm Sci; 2006 Feb; 27(2-3):143-9. PubMed ID: 16243496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulation of water-soluble drugs by an o/o/o-solvent extraction microencapsulation method.
    Elkharraz K; Ahmed AR; Dashevsky A; Bodmeier R
    Int J Pharm; 2011 May; 409(1-2):89-95. PubMed ID: 21356287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: in vitro release, pharmacokinetics, and stability.
    Ahmed TA; Ibrahim HM; Samy AM; Kaseem A; Nutan MT; Hussain MD
    AAPS PharmSciTech; 2014 Jun; 15(3):772-80. PubMed ID: 24648158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the poly(lactide-co-glycolide) type on the leuprolide release from in situ forming microparticle systems.
    Luan X; Bodmeier R
    J Control Release; 2006 Jan; 110(2):266-272. PubMed ID: 16300851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of poly(D,L-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems.
    Dong WY; Körber M; López Esguerra V; Bodmeier R
    J Control Release; 2006 Oct; 115(2):158-67. PubMed ID: 16963145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physico-chemical characterization.
    Camargo JA; Sapin A; Nouvel C; Daloz D; Leonard M; Bonneaux F; Six JL; Maincent P
    Drug Dev Ind Pharm; 2013 Jan; 39(1):146-55. PubMed ID: 22397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo drug release from a novel in situ forming drug delivery system.
    Kranz H; Yilmaz E; Brazeau GA; Bodmeier R
    Pharm Res; 2008 Jun; 25(6):1347-54. PubMed ID: 17968634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interplay of membrane formation and drug release in solution-cast films of polylactide polymers.
    Ma D; McHugh AJ
    Int J Pharm; 2010 Mar; 388(1-2):1-12. PubMed ID: 20025948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of biodegradable in situ implant and microparticle injectable formulations for sustained delivery of haloperidol.
    Ahmed TA; Ibrahim HM; Ibrahim F; Samy AM; Kaseem A; Nutan MT; Hussain MD
    J Pharm Sci; 2012 Oct; 101(10):3753-62. PubMed ID: 22753324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the design of in situ forming biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles.
    Packhaeuser CB; Kissel T
    J Control Release; 2007 Nov; 123(2):131-40. PubMed ID: 17854938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release.
    Parent M; Nouvel C; Koerber M; Sapin A; Maincent P; Boudier A
    J Control Release; 2013 Nov; 172(1):292-304. PubMed ID: 24001947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction in burst release of PLGA microparticles by incorporation into cubic phase-forming systems.
    Ahmed AR; Dashevsky A; Bodmeier R
    Eur J Pharm Biopharm; 2008 Nov; 70(3):765-9. PubMed ID: 18692569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring release of ketoprofen enantiomers from biodegradable poly(D,L-lactide-co-glycolide) injectable implants.
    Wang SH; Liang ZH; Zeng S
    Int J Pharm; 2007 Jun; 337(1-2):102-8. PubMed ID: 17296274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation, characterization and in vitro cytotoxicity of indomethacin-loaded PLLA/PLGA microparticles using supercritical CO2 technique.
    Kang Y; Wu J; Yin G; Huang Z; Yao Y; Liao X; Chen A; Pu X; Liao L
    Eur J Pharm Biopharm; 2008 Sep; 70(1):85-97. PubMed ID: 18495445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions.
    Cavallaro G; Craparo EF; Sardo C; Lamberti G; Barba AA; Dalmoro A
    Int J Pharm; 2015 Nov; 495(2):719-27. PubMed ID: 26410757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of preformed porous PLGA microparticles and antisense oligonucleotides loading.
    Ahmed AR; Bodmeier R
    Eur J Pharm Biopharm; 2009 Feb; 71(2):264-70. PubMed ID: 18840521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sucrose acetate isobutyrate as an in situ forming system for sustained risperidone release.
    Lu Y; Yu Y; Tang X
    J Pharm Sci; 2007 Dec; 96(12):3252-62. PubMed ID: 17721936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.