BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 17084098)

  • 1. Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases.
    Papaleo E; Olufsen M; De Gioia L; Brandsdal BO
    J Mol Graph Model; 2007 Jul; 26(1):93-103. PubMed ID: 17084098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexibility and enzymatic cold-adaptation: a comparative molecular dynamics investigation of the elastase family.
    Papaleo E; Riccardi L; Villa C; Fantucci P; De Gioia L
    Biochim Biophys Acta; 2006 Aug; 1764(8):1397-406. PubMed ID: 16920043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different roles of electrostatics in heat and in cold: adaptation by citrate synthase.
    Kumar S; Nussinov R
    Chembiochem; 2004 Mar; 5(3):280-90. PubMed ID: 14997520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold adaptation of enzyme reaction rates.
    Bjelic S; Brandsdal BO; Aqvist J
    Biochemistry; 2008 Sep; 47(38):10049-57. PubMed ID: 18759500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative unfolding studies of psychrophilic and mesophilic uracil DNA glycosylase: MD simulations show reduced thermal stability of the cold-adapted enzyme.
    Olufsen M; Brandsdal BO; Smalås AO
    J Mol Graph Model; 2007 Jul; 26(1):124-34. PubMed ID: 17134924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family.
    Adekoya OA; Helland R; Willassen NP; Sylte I
    Proteins; 2006 Feb; 62(2):435-49. PubMed ID: 16294337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic properties of extremophilic subtilisin-like serine-proteases.
    Tiberti M; Papaleo E
    J Struct Biol; 2011 Apr; 174(1):69-83. PubMed ID: 21276854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatics of mesophilic and psychrophilic trypsin isoenzymes: qualitative evaluation of electrostatic differences at the substrate binding site.
    Gorfe AA; Brandsdal BO; Leiros HK; Helland R; Smalås AO
    Proteins; 2000 Aug; 40(2):207-17. PubMed ID: 10842337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic Adaptation of Psychrophilic Elastase.
    Sočan J; Kazemi M; Isaksen GV; Brandsdal BO; Åqvist J
    Biochemistry; 2018 May; 57(20):2984-2993. PubMed ID: 29726678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation.
    Arnórsdóttir J; Kristjánsson MM; Ficner R
    FEBS J; 2005 Feb; 272(3):832-45. PubMed ID: 15670163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene amplification and cold adaptation of pepsin in Antarctic fish. A possible strategy for food digestion at low temperature.
    Carginale V; Trinchella F; Capasso C; Scudiero R; Parisi E
    Gene; 2004 Jul; 336(2):195-205. PubMed ID: 15246531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt bridge stability in monomeric proteins.
    Kumar S; Nussinov R
    J Mol Biol; 1999 Nov; 293(5):1241-55. PubMed ID: 10547298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins.
    Elcock AH
    J Mol Biol; 1998 Nov; 284(2):489-502. PubMed ID: 9813132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability.
    de Bakker PI; Hünenberger PH; McCammon JA
    J Mol Biol; 1999 Jan; 285(4):1811-30. PubMed ID: 9917414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of a cold-adapted class C beta-lactamase.
    Michaux C; Massant J; Kerff F; Frère JM; Docquier JD; Vandenberghe I; Samyn B; Pierrard A; Feller G; Charlier P; Van Beeumen J; Wouters J
    FEBS J; 2008 Apr; 275(8):1687-97. PubMed ID: 18312599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of lysine versus arginine in enzyme cold-adaptation: modifying lysine to homo-arginine stabilizes the cold-adapted alpha-amylase from Pseudoalteramonas haloplanktis.
    Siddiqui KS; Poljak A; Guilhaus M; De Francisci D; Curmi PM; Feller G; D'Amico S; Gerday C; Uversky VN; Cavicchioli R
    Proteins; 2006 Aug; 64(2):486-501. PubMed ID: 16705665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic arrangement of ion pairs and individual contributions to the thermal stability of the cofactor-binding domain of glutamate dehydrogenase from Thermotoga maritima.
    Danciulescu C; Ladenstein R; Nilsson L
    Biochemistry; 2007 Jul; 46(29):8537-49. PubMed ID: 17602502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of the catalytic thiolate in a mammalian glutaredoxin: structure, dynamics and electrostatics of reduced pig glutaredoxin and its mutants.
    Foloppe N; Nilsson L
    J Mol Biol; 2007 Sep; 372(3):798-816. PubMed ID: 17681533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.