These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 17084377)

  • 41. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein.
    Tang YC; Chang HC; Roeben A; Wischnewski D; Wischnewski N; Kerner MJ; Hartl FU; Hayer-Hartl M
    Cell; 2006 Jun; 125(5):903-14. PubMed ID: 16751100
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The chaperonin cycle and protein folding.
    Lund P
    Bioessays; 1994 Apr; 16(4):229-31. PubMed ID: 7913317
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The crystal structure of the GroES co-chaperonin at 2.8 A resolution.
    Hunt JF; Weaver AJ; Landry SJ; Gierasch L; Deisenhofer J
    Nature; 1996 Jan; 379(6560):37-45. PubMed ID: 8538739
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The 69 kDa Escherichia coli maltodextrin glucosidase does not get encapsulated underneath GroES and folds through trans mechanism during GroEL/GroES-assisted folding.
    Paul S; Singh C; Mishra S; Chaudhuri TK
    FASEB J; 2007 Sep; 21(11):2874-85. PubMed ID: 17494995
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Folding with and without encapsulation by cis- and trans-only GroEL-GroES complexes.
    Farr GW; Fenton WA; Chaudhuri TK; Clare DK; Saibil HR; Horwich AL
    EMBO J; 2003 Jul; 22(13):3220-30. PubMed ID: 12839985
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes.
    Haldar S; Gupta AJ; Yan X; Miličić G; Hartl FU; Hayer-Hartl M
    J Mol Biol; 2015 Jun; 427(12):2244-55. PubMed ID: 25912285
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Folding behavior of a backbone-reversed protein: reversible polyproline type II to beta-sheet thermal transitions in retro-GroES multimers with GroES-like features.
    Ahmed S; Shukla A; Guptasarma P
    Biochim Biophys Acta; 2008 Jun; 1784(6):916-23. PubMed ID: 18359305
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity.
    Betancourt MR; Thirumalai D
    J Mol Biol; 1999 Apr; 287(3):627-44. PubMed ID: 10092464
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure of Mycobacterium tuberculosis chaperonin-10 at 3.5 A resolution.
    Taneja B; Mande SC
    Acta Crystallogr D Biol Crystallogr; 2002 Feb; 58(Pt 2):260-6. PubMed ID: 11807250
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding.
    van der Vies SM; Gatenby AA; Georgopoulos C
    Nature; 1994 Apr; 368(6472):654-6. PubMed ID: 7908418
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of the GroE molecular chaperone machine on the in vitro refolding of Escherichia coli beta-galactosidase.
    Ayling A; Baneyx F
    Protein Sci; 1996 Mar; 5(3):478-87. PubMed ID: 8868484
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chaperonin-affected refolding of alpha-lactalbumin: effects of nucleotides and the co-chaperonin GroES.
    Makio T; Arai M; Kuwajima K
    J Mol Biol; 1999 Oct; 293(1):125-37. PubMed ID: 10512721
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The origins and consequences of asymmetry in the chaperonin reaction cycle.
    Burston SG; Ranson NA; Clarke AR
    J Mol Biol; 1995 May; 249(1):138-52. PubMed ID: 7776368
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding.
    Martin J; Mayhew M; Langer T; Hartl FU
    Nature; 1993 Nov; 366(6452):228-33. PubMed ID: 7901770
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chemical synthesis and characterisation of rat chaperonin 10: effect of chain length, ions, heat and N-terminal acetylation on unchaperoned folding into its heptameric form.
    Ball HL; Giuliani P; Lucietto P; Fossati G; Mascagni P
    Biomed Pept Proteins Nucleic Acids; 1994-1995; 1(1):39-44. PubMed ID: 9346868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chaperonin-assisted folding of glutamine synthetase under nonpermissive conditions: off-pathway aggregation propensity does not determine the co-chaperonin requirement.
    Voziyan PA; Fisher MT
    Protein Sci; 2000 Dec; 9(12):2405-12. PubMed ID: 11206062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A chaperonin from a thermophilic bacterium, Thermus thermophilus.
    Yoshida M; Ishii N; Muneyuki E; Taguchi H
    Philos Trans R Soc Lond B Biol Sci; 1993 Mar; 339(1289):305-12. PubMed ID: 8098535
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The mechanism of GroEL/GroES folding/refolding of protein substrates revisited.
    Jones H; Preuss M; Wright M; Miller AD
    Org Biomol Chem; 2006 Apr; 4(7):1223-35. PubMed ID: 16557310
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unfolded DapA forms aggregates when diluted into free solution, confounding comparison with folding by the GroEL/GroES chaperonin system.
    Ambrose A; Fenton W; Mason DJ; Chapman E; Horwich AL
    FEBS Lett; 2015 Feb; 589(4):497-499. PubMed ID: 25601566
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding.
    Weber F; Keppel F; Georgopoulos C; Hayer-Hartl MK; Hartl FU
    Nat Struct Biol; 1998 Nov; 5(11):977-85. PubMed ID: 9808043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.