BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 17084585)

  • 1. Antioxidative and oxidative changes in the digestive gland cells of freshwater mussels Unio tumidus caused by selected phenolic compounds in the presence of H(2)O(2) or Cu(2+) ions.
    Labieniec M; Gabryelak T
    Toxicol In Vitro; 2007 Feb; 21(1):146-56. PubMed ID: 17084585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of digestive gland cells of freshwater mussel Unio tumidus to phenolic compound exposure in vivo.
    Labieniec M; Biernat M; Gabryelak T
    Cell Biol Int; 2007 Jul; 31(7):683-90. PubMed ID: 17314053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of interactions between phenolic compounds and H2O2 or Cu(II) ions in B14 Chinese hamster cells.
    Labieniec M; Gabryelak T
    Cell Biol Int; 2006 Oct; 30(10):761-8. PubMed ID: 16820308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidatively modified proteins and DNA in digestive gland cells of the fresh-water mussel Unio tumidus in the presence of tannic acid and its derivatives.
    Łabieniec M; Gabryelak T
    Mutat Res; 2006 Jan; 603(1):48-55. PubMed ID: 16387525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant and pro-oxidant effects of tannins in digestive cells of the freshwater mussel Unio tumidus.
    Labieniec M; Gabryelak T; Falcioni G
    Mutat Res; 2003 Aug; 539(1-2):19-28. PubMed ID: 12948811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of DNA, proteins and membrane bilayer in the digestive gland cells of freshwater mussel Unio tumidus to tannins exposure.
    Labieniec M; Gabryelak T
    Toxicol In Vitro; 2004 Dec; 18(6):773-81. PubMed ID: 15465642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of DNA damage and protein oxidation after the incubation of B14 Chinese hamster cells with chosen polyphenols.
    Labieniec M; Gabryelak T
    Toxicol Lett; 2005 Jan; 155(1):15-25. PubMed ID: 15585355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The efficacy of protective effects of tannic acid, gallic acid, ellagic acid, and propyl gallate against hydrogen peroxide-induced oxidative stress and DNA damages in IMR-90 cells.
    Chen CH; Liu TZ; Chen CH; Wong CH; Chen CH; Lu FJ; Chen SC
    Mol Nutr Food Res; 2007 Aug; 51(8):962-8. PubMed ID: 17628875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of hydrogen peroxide in cell culture media by apple polyphenols and its effect on antioxidant biomarkers in the colon cell line HT-29.
    Bellion P; Olk M; Will F; Dietrich H; Baum M; Eisenbrand G; Janzowski C
    Mol Nutr Food Res; 2009 Oct; 53(10):1226-36. PubMed ID: 19753603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.
    Apak R; Güçlü K; Ozyürek M; Karademir SE
    J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative breakage of cellular DNA by plant polyphenols: a putative mechanism for anticancer properties.
    Hadi SM; Bhat SH; Azmi AS; Hanif S; Shamim U; Ullah MF
    Semin Cancer Biol; 2007 Oct; 17(5):370-6. PubMed ID: 17572102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals.
    Cho ES; Jang YJ; Hwang MK; Kang NJ; Lee KW; Lee HJ
    Mutat Res; 2009 Feb; 661(1-2):18-24. PubMed ID: 19028509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen-dependent DNA damage resulting from the oxidation of phenolic compounds by a copper-redox cycle mechanism.
    Li Y; Trush MA
    Cancer Res; 1994 Apr; 54(7 Suppl):1895s-1898s. PubMed ID: 8137307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant properties of carnosine re-evaluated with oxidizing systems involving iron and copper ions.
    Mozdzan M; Szemraj J; Rysz J; Nowak D
    Basic Clin Pharmacol Toxicol; 2005 May; 96(5):352-60. PubMed ID: 15853927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effects of ellagic and chlorogenic acids against oxidative stress in PC12 cells.
    Pavlica S; Gebhardt R
    Free Radic Res; 2005 Dec; 39(12):1377-90. PubMed ID: 16298868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of deltamethrin on antioxidant status and oxidative stress biomarkers in freshwater mussel, Unio elongatulus eucirrus.
    Köprücü SS; Yonar E; Seker E
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):253-7. PubMed ID: 18587520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-oxidant activity of spermine and spermidine re-evaluated with oxidizing systems involving iron and copper ions.
    Mozdzan M; Szemraj J; Rysz J; Stolarek RA; Nowak D
    Int J Biochem Cell Biol; 2006 Jan; 38(1):69-81. PubMed ID: 16107320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-induced oxidative stress in rainbow trout gill cells.
    Bopp SK; Abicht HK; Knauer K
    Aquat Toxicol; 2008 Jan; 86(2):197-204. PubMed ID: 18063143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxycinnamic acids as DNA-cleaving agents in the presence of Cu(II) ions: mechanism, structure-activity relationship, and biological implications.
    Fan GJ; Jin XL; Qian YP; Wang Q; Yang RT; Dai F; Tang JJ; Shang YJ; Cheng LX; Yang J; Zhou B
    Chemistry; 2009 Nov; 15(46):12889-99. PubMed ID: 19847825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties.
    Azmi AS; Bhat SH; Hanif S; Hadi SM
    FEBS Lett; 2006 Jan; 580(2):533-8. PubMed ID: 16412432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.