BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17084913)

  • 1. Contribution of cutaneous inputs from the hindpaw to the control of locomotion in rats.
    Varejão AS; Filipe VM
    Behav Brain Res; 2007 Jan; 176(2):193-201. PubMed ID: 17084913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison analysis of hindlimb kinematics during overground and treadmill locomotion in rats.
    Pereira JE; Cabrita AM; Filipe VM; Bulas-Cruz J; Couto PA; Melo-Pinto P; Costa LM; Geuna S; Maurício AC; Varejão AS
    Behav Brain Res; 2006 Sep; 172(2):212-8. PubMed ID: 16777243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. I. Intact cats.
    Bouyer LJ; Rossignol S
    J Neurophysiol; 2003 Dec; 90(6):3625-39. PubMed ID: 12944536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats.
    Bouyer LJ; Rossignol S
    J Neurophysiol; 2003 Dec; 90(6):3640-53. PubMed ID: 12944535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical reference frame versus planar analysis: implications for the kinematics of the rat hindlimb during locomotion.
    João F; Amado S; Veloso A; Armada-da-Silva P; Maurício AC
    Rev Neurosci; 2010; 21(6):469-85. PubMed ID: 21438194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of skin movement on the analysis of hindlimb kinematics during treadmill locomotion in rats.
    Filipe VM; Pereira JE; Costa LM; Maurício AC; Couto PA; Melo-Pinto P; Varejão AS
    J Neurosci Methods; 2006 May; 153(1):55-61. PubMed ID: 16337686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 3D analysis of fore- and hindlimb motion during overground and ladder walking: comparison of control and unloaded rats.
    Canu MH; Garnier C
    Exp Neurol; 2009 Jul; 218(1):98-108. PubMed ID: 19393236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings.
    Halbertsma JM
    Acta Physiol Scand Suppl; 1983; 521():1-75. PubMed ID: 6582764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of hindpaw cutaneous inputs to the control of lateral stability during walking in the cat.
    Bolton DA; Misiaszek JE
    J Neurophysiol; 2009 Sep; 102(3):1711-24. PubMed ID: 19605609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive control for backward quadrupedal walking. I. Posture and hindlimb kinematics.
    Buford JA; Zernicke RF; Smith JL
    J Neurophysiol; 1990 Sep; 64(3):745-55. PubMed ID: 2230921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D analysis of fore- and hindlimb motion during locomotion: comparison of overground and ladder walking in rats.
    Garnier C; Falempin M; Canu MH
    Behav Brain Res; 2008 Jan; 186(1):57-65. PubMed ID: 17764759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Reflex component of the swing phase: a comparative analysis of locomotion in intact and deafferentated rats].
    Iakhnitsa IA; Bulgakova NV; Piliavskiĭ AI
    Neirofiziologiia; 1987; 19(5):654-9. PubMed ID: 3447064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task specific adaptations in rat locomotion: runway versus horizontal ladder.
    Bolton DA; Tse AD; Ballermann M; Misiaszek JE; Fouad K
    Behav Brain Res; 2006 Apr; 168(2):272-9. PubMed ID: 16406145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D analysis of hindlimb motion during treadmill locomotion in rats after a 14-day episode of simulated microgravity.
    Canu MH; Garnier C; Lepoutre FX; Falempin M
    Behav Brain Res; 2005 Feb; 157(2):309-21. PubMed ID: 15639182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N; Toba Y; Iwamoto W; Goto M; Miyata H; Mori F; Morita F
    Brain Res; 2008 Dec; 1243():70-7. PubMed ID: 18835381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sensitivity of two-dimensional hindlimb joint kinematics analysis in assessing functional recovery in rats after sciatic nerve crush.
    Amado S; Armada-da-Silva PA; João F; Maurício AC; Luís AL; Simões MJ; Veloso AP
    Behav Brain Res; 2011 Dec; 225(2):562-73. PubMed ID: 21875621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparative analysis of the kinematics of hindlimb movements in different forms of locomotion in the rat].
    Iakhnitsa IA; Piliavskiĭ AI; Bulgakova NV
    Neirofiziologiia; 1985; 17(2):189-98. PubMed ID: 4000303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N; Ekeberg O
    Biol Cybern; 2008 Aug; 99(2):125-38. PubMed ID: 18648849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus).
    D'Août K; Aerts P; De Clercq D; De Meester K; Van Elsacker L
    Am J Phys Anthropol; 2002 Sep; 119(1):37-51. PubMed ID: 12209572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hopping and swimming in the leopard frog, Rana pipiens: I. Step cycles and kinematics.
    Peters SE; Kamel LT; Bashor DP
    J Morphol; 1996 Oct; 230(1):1-16. PubMed ID: 8843687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.