BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17085051)

  • 1. Preparation of secolycorines against acetylcholinesterase.
    Lee SS; Venkatesham U; Rao CP; Lam SH; Lin JH
    Bioorg Med Chem; 2007 Jan; 15(2):1034-43. PubMed ID: 17085051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of 6beta-D-glucosyl and 6-nitroxy (-)-galanthamine derivatives as acetylcholinesterase inhibitors.
    Perissutti E; Fiorino F; Severino B; Frecentese F; Massarelli P; Nencini C; Santagada V; Caliendo G
    Pharmazie; 2007 Jun; 62(6):403-5. PubMed ID: 17663183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potent acetylcholinesterase inhibitors: design, synthesis and structure-activity relationships of alkylene linked bis-galanthamine and galanthamine-galanthaminium salts.
    Guillou C; Mary A; Renko DZ; Gras E; Thal C
    Bioorg Med Chem Lett; 2000 Apr; 10(7):637-9. PubMed ID: 10762042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Synthesis of Certain Derivatives and Analogues of (-)- and (+)-Galanthamine and an Assessment of their Capacities to Inhibit Acetylcholine Esterase.
    Buckler JN; Taher ES; Fraser NJ; Willis AC; Carr PD; Jackson CJ; Banwell MG
    J Org Chem; 2017 Aug; 82(15):7869-7886. PubMed ID: 28671462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galantamine derivatives with indole moiety: Docking, design, synthesis and acetylcholinesterase inhibitory activity.
    Atanasova M; Stavrakov G; Philipova I; Zheleva D; Yordanov N; Doytchinova I
    Bioorg Med Chem; 2015 Sep; 23(17):5382-9. PubMed ID: 26260334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, anticholinesterase activity and molecular docking of new lupane derivatives.
    Castro MJ; Richmond V; Romero C; Maier MS; Estévez-Braun A; Ravelo AG; Faraoni MB; Murray AP
    Bioorg Med Chem; 2014 Jul; 22(13):3341-50. PubMed ID: 24835788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemiluminescent high-throughput microassay applied to imidazo[2,1-b]thiazole derivatives as potential acetylcholinesterase and butyrylcholinesterase inhibitors.
    Andreani A; Burnelli S; Granaiola M; Guardigli M; Leoni A; Locatelli A; Morigi R; Rambaldi M; Rizzoli M; Varoli L; Roda A
    Eur J Med Chem; 2008 Mar; 43(3):657-61. PubMed ID: 17624631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, synthesis and evaluation of galanthamine derivatives as acetylcholinesterase inhibitors.
    Jia P; Sheng R; Zhang J; Fang L; He Q; Yang B; Hu Y
    Eur J Med Chem; 2009 Feb; 44(2):772-84. PubMed ID: 18550228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-Alkylated galanthamine derivatives: Potent acetylcholinesterase inhibitors from Leucojum aestivum.
    Berkov S; Codina C; Viladomat F; Bastida J
    Bioorg Med Chem Lett; 2008 Apr; 18(7):2263-6. PubMed ID: 18356045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel racemic tetrahydrocurcuminoid dihydropyrimidinone analogues as potent acetylcholinesterase inhibitors.
    Arunkhamkaew S; Athipornchai A; Apiratikul N; Suksamrarn A; Ajavakom V
    Bioorg Med Chem Lett; 2013 May; 23(10):2880-2. PubMed ID: 23583510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of novel N-alkyl carbamates of a-substituted amides of g-hydroxybutyric acid as potential acetylcholinesterase inhibitors.
    Musiał A; Malawska B
    Acta Pol Pharm; 2004 Dec; 61 Suppl():94-7. PubMed ID: 15909954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of anti-acetylcholinesterase activity of bulb and leaf extracts of Sternbergia candida Mathew & T. Baytop.
    Haznedaroglu MZ; Gokce G
    Acta Biol Hung; 2014 Dec; 65(4):396-404. PubMed ID: 25475979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of novel 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(substituted/-nonsubstituted benzal)hydrazone derivatives and acetylcholinesterase and butyrylcholinesterase inhibitory activities in vitro.
    Utku S; Gökçe M; Orhan I; Sahin MF
    Arzneimittelforschung; 2011; 61(1):1-7. PubMed ID: 21355440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of narciprimine from Cyrtanthus contractus (Amaryllidaceae) and evaluation of its acetylcholinesterase inhibitory activity.
    Nair JJ; Aremu AO; van Staden J
    J Ethnopharmacol; 2011 Oct; 137(3):1102-6. PubMed ID: 21787856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis and biological evaluation of new 2-benzoxazolinone derivatives as potential cholinesterase inhibitors for therapy of alzheimer's disease.
    Szymański P; Janik A; Zurek E; Mikiciuk-Olasik E
    Pharmazie; 2011 Jun; 66(6):399-403. PubMed ID: 21699076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isoquinoline derivatives as potential acetylcholinesterase inhibitors.
    Markmee S; Ruchirawat S; Prachyawarakorn V; Ingkaninan K; Khorana N
    Bioorg Med Chem Lett; 2006 Apr; 16(8):2170-2. PubMed ID: 16483771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semisynthesis and acetylcholinesterase inhibitory activity of stemofoline alkaloids and analogues.
    Sastraruji K; Sastraruji T; Pyne SG; Ung AT; Jatisatienr A; Lie W
    J Nat Prod; 2010 May; 73(5):935-41. PubMed ID: 20415428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and structure-activity relationships of open D-Ring galanthamine analogues.
    Herlem D; Martin MT; Thal C; Guillou C
    Bioorg Med Chem Lett; 2003 Jul; 13(14):2389-91. PubMed ID: 12824041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, synthesis, and biological evaluation of acetophenone derivatives as dual binding acetylcholinesterase inhibitors.
    Shen Y; Li B; Xu H; Zhang G
    Pharmazie; 2013 May; 68(5):307-10. PubMed ID: 23802426
    [TBL] [