These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. Marvasi M; Visscher PT; Perito B; Mastromei G; Casillas-Martínez L FEMS Microbiol Ecol; 2010 Mar; 71(3):341-50. PubMed ID: 20059546 [TBL] [Abstract][Full Text] [Related]
3. Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation. Matsuoka H; Hirooka K; Fujita Y J Biol Chem; 2007 Feb; 282(8):5180-94. PubMed ID: 17189250 [TBL] [Abstract][Full Text] [Related]
4. Genetic optimisation of bacteria-induced calcite precipitation in Bacillus subtilis. Hoffmann TD; Paine K; Gebhard S Microb Cell Fact; 2021 Nov; 20(1):214. PubMed ID: 34794448 [TBL] [Abstract][Full Text] [Related]
5. Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. São-José C; Baptista C; Santos MA J Bacteriol; 2004 Dec; 186(24):8337-46. PubMed ID: 15576783 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of the Bacillus subtilis D-glucarate/galactarate utilization operon ycbCDEFGHJ. Hosoya S; Yamane K; Takeuchi M; Sato T FEMS Microbiol Lett; 2002 May; 210(2):193-9. PubMed ID: 12044674 [TBL] [Abstract][Full Text] [Related]
7. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. Gardan R; Rapoport G; Débarbouillé M J Mol Biol; 1995 Jun; 249(5):843-56. PubMed ID: 7540694 [TBL] [Abstract][Full Text] [Related]
8. [The operon organization of genes for riboflavin biosynthesis in Bacillus subtilis]. Mironov VN; Chikindas ML; Kraev AS; Stepanov AI; Skriabin KG Dokl Akad Nauk SSSR; 1990; 312(1):237-40. PubMed ID: 2120021 [No Abstract] [Full Text] [Related]
9. Development of Bacillus subtilis mutants to produce tryptophan in pigs. Bjerre K; Cantor MD; Nørgaard JV; Poulsen HD; Blaabjerg K; Canibe N; Jensen BB; Stuer-Lauridsen B; Nielsen B; Derkx PM Biotechnol Lett; 2017 Feb; 39(2):289-295. PubMed ID: 27812824 [TBL] [Abstract][Full Text] [Related]
10. Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Hamon MA; Stanley NR; Britton RA; Grossman AD; Lazazzera BA Mol Microbiol; 2004 May; 52(3):847-60. PubMed ID: 15101989 [TBL] [Abstract][Full Text] [Related]
11. The riboflavin kinase encoding gene ribR of Bacillus subtilis is a part of a 10 kb operon, which is negatively regulated by the yrzC gene product. Solovieva IM; Kreneva RA; Errais Lopes L; Perumov DA FEMS Microbiol Lett; 2005 Feb; 243(1):51-8. PubMed ID: 15668000 [TBL] [Abstract][Full Text] [Related]
12. The effects of insertional mutations in comQ, comP, srfA, spo0H, spo0A and abrB genes on bacilysin biosynthesis in Bacillus subtilis. Karataş AY; Cetin S; Ozcengiz G Biochim Biophys Acta; 2003 Apr; 1626(1-3):51-6. PubMed ID: 12697329 [TBL] [Abstract][Full Text] [Related]
13. Genetic analysis of an incomplete bio operon in a biotin auxotrophic strain of Bacillus subtilis natto OK2. Sasaki M; Kawamura F; Kurusu Y Biosci Biotechnol Biochem; 2004 Mar; 68(3):739-42. PubMed ID: 15056910 [TBL] [Abstract][Full Text] [Related]
14. Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli. de Oliveira RR; Nicholson WL Appl Microbiol Biotechnol; 2016 Jan; 100(2):719-28. PubMed ID: 26454865 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter. Sun H; Bie X; Lu F; Lu Y; Wu Y; Lu Z Can J Microbiol; 2009 Aug; 55(8):1003-6. PubMed ID: 19898540 [TBL] [Abstract][Full Text] [Related]
16. Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. Rückert C; Koch DJ; Rey DA; Albersmeier A; Mormann S; Pühler A; Kalinowski J BMC Genomics; 2005 Sep; 6():121. PubMed ID: 16159395 [TBL] [Abstract][Full Text] [Related]
17. Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon. Calvio C; Celandroni F; Ghelardi E; Amati G; Salvetti S; Ceciliani F; Galizzi A; Senesi S J Bacteriol; 2005 Aug; 187(15):5356-66. PubMed ID: 16030230 [TBL] [Abstract][Full Text] [Related]
18. Functional analysis of a gene cluster for putative bacteriocin deduced from the genome sequence of Aeribacillus pallidus PI8. Kita K; Yoshida S; Ishikawa S; Yoshida KI J Gen Appl Microbiol; 2022 Sep; 68(2):87-94. PubMed ID: 35418540 [TBL] [Abstract][Full Text] [Related]
19. Calcium Carbonate Precipitation by Bacillus and Sporosarcina Strains Isolated from Concrete and Analysis of the Bacterial Community of Concrete. Kim HJ; Eom HJ; Park C; Jung J; Shin B; Kim W; Chung N; Choi IG; Park W J Microbiol Biotechnol; 2016 Mar; 26(3):540-8. PubMed ID: 26699752 [TBL] [Abstract][Full Text] [Related]
20. [Unusual structure of the regulatory region of the riboflavin biosynthesis operon in Bacillus subtilis]. Mironov VN; Perumov DA; Kraev AS; Stepanov AI; Skriabin KG Mol Biol (Mosk); 1990; 24(1):256-61. PubMed ID: 2112225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]