BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 17085755)

  • 1. Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity.
    Lucena C; Waters BM; Romera FJ; García MJ; Morales M; Alcántara E; Pérez-Vicente R
    J Exp Bot; 2006; 57(15):4145-54. PubMed ID: 17085755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethylene involvement in the regulation of the H(+)-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants.
    Waters BM; Lucena C; Romera FJ; Jester GG; Wynn AN; Rojas CL; Alcántara E; Pérez-Vicente R
    Plant Physiol Biochem; 2007 May; 45(5):293-301. PubMed ID: 17468001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants.
    García MJ; Romera FJ; Stacey MG; Stacey G; Villar E; Alcántara E; Pérez-Vicente R
    Planta; 2013 Jan; 237(1):65-75. PubMed ID: 22983673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of IRT1 by the nickel-induced iron-deficient response in Arabidopsis.
    Nishida S; Aisu A; Mizuno T
    Plant Signal Behav; 2012 Mar; 7(3):329-31. PubMed ID: 22476458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control.
    Connolly EL; Campbell NH; Grotz N; Prichard CL; Guerinot ML
    Plant Physiol; 2003 Nov; 133(3):1102-10. PubMed ID: 14526117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.
    Shanmugam V; Lo JC; Wu CL; Wang SL; Lai CC; Connolly EL; Huang JL; Yeh KC
    New Phytol; 2011 Apr; 190(1):125-137. PubMed ID: 21219335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis.
    Yuan Y; Wu H; Wang N; Li J; Zhao W; Du J; Wang D; Ling HQ
    Cell Res; 2008 Mar; 18(3):385-97. PubMed ID: 18268542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bicarbonate blocks the expression of several genes involved in the physiological responses to Fe deficiency of Strategy I plants.
    Lucena C; Romera FJ; Rojas CL; García MJ; Alcántara E; Pérez-Vicente R
    Funct Plant Biol; 2007 Dec; 34(11):1002-1009. PubMed ID: 32689428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells.
    Vert G; Barberon M; Zelazny E; Séguéla M; Briat JF; Curie C
    Planta; 2009 May; 229(6):1171-9. PubMed ID: 19252923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.
    Colangelo EP; Guerinot ML
    Plant Cell; 2004 Dec; 16(12):3400-12. PubMed ID: 15539473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants.
    Yuan YX; Zhang J; Wang DW; Ling HQ
    Cell Res; 2005 Aug; 15(8):613-21. PubMed ID: 16117851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulphur deprivation limits Fe-deficiency responses in tomato plants.
    Zuchi S; Cesco S; Varanini Z; Pinton R; Astolfi S
    Planta; 2009 Jun; 230(1):85-94. PubMed ID: 19350269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals.
    Vert GA; Briat JF; Curie C
    Plant Physiol; 2003 Jun; 132(2):796-804. PubMed ID: 12805609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato.
    Du J; Huang Z; Wang B; Sun H; Chen C; Ling HQ; Wu H
    Ann Bot; 2015 Jul; 116(1):23-34. PubMed ID: 26070639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser microdissection-assisted analysis of the functional fate of iron deficiency-induced root hairs in cucumber.
    Santi S; Schmidt W
    J Exp Bot; 2008; 59(3):697-704. PubMed ID: 18316319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis.
    Fukao Y; Ferjani A; Tomioka R; Nagasaki N; Kurata R; Nishimori Y; Fujiwara M; Maeshima M
    Plant Physiol; 2011 Apr; 155(4):1893-907. PubMed ID: 21325567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency.
    Thomine S; Lelièvre F; Debarbieux E; Schroeder JI; Barbier-Brygoo H
    Plant J; 2003 Jun; 34(5):685-95. PubMed ID: 12787249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status.
    Dellagi A; Segond D; Rigault M; Fagard M; Simon C; Saindrenan P; Expert D
    Plant Physiol; 2009 Aug; 150(4):1687-96. PubMed ID: 19448037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of Fe deficiency gene expression by jasmonate.
    Maurer F; Müller S; Bauer P
    Plant Physiol Biochem; 2011 May; 49(5):530-6. PubMed ID: 21334215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses.
    Sivitz A; Grinvalds C; Barberon M; Curie C; Vert G
    Plant J; 2011 Jun; 66(6):1044-52. PubMed ID: 21426424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.