These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 17086076)

  • 1. Psychophysical assessment of spatial spread of excitation in electrical hearing with single and dual electrode contact maskers.
    Dingemanse JG; Frijns JH; Briaire JJ
    Ear Hear; 2006 Dec; 27(6):645-57. PubMed ID: 17086076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation patterns of simultaneous and sequential dual-electrode stimulation in cochlear implant recipients.
    Saoji AA; Litvak LM; Hughes ML
    Ear Hear; 2009 Oct; 30(5):559-67. PubMed ID: 19617837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural response telemetry reconsidered: II. The influence of neural population on the ECAP recovery function and refractoriness.
    Botros A; Psarros C
    Ear Hear; 2010 Jun; 31(3):380-91. PubMed ID: 20090532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological spread of excitation and pitch perception for dual and single electrodes using the Nucleus Freedom cochlear implant.
    Busby PA; Battmer RD; Pesch J
    Ear Hear; 2008 Dec; 29(6):853-64. PubMed ID: 18633324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimates of basilar-membrane nonlinearity effects on masking of tones and speech.
    Dubno JR; Horwitz AR; Ahlstrom JB
    Ear Hear; 2007 Feb; 28(1):2-17. PubMed ID: 17204895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spread of excitation and channel interaction in single- and dual-electrode cochlear implant stimulation.
    Snel-Bongers J; Briaire JJ; Vanpoucke FJ; Frijns JH
    Ear Hear; 2012; 33(3):367-76. PubMed ID: 22048258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An objective method to measure electrode independence in cochlear implant patients with a dual-masker forward masking technique.
    Klop WM; Frijns JH; Soede W; Briaire JJ
    Hear Res; 2009 Jul; 253(1-2):3-14. PubMed ID: 19306921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency tuning curves derived from auditory steady state evoked potentials: a proof-of-concept study.
    Markessis E; Poncelet L; Colin C; Coppens A; Hoonhorst I; Kadhim H; Deltenre P
    Ear Hear; 2009 Feb; 30(1):43-53. PubMed ID: 19125026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning curves and masking functions of auditory-nerve fibers in cat.
    Bauer JW
    Sens Processes; 1978 Jun; 2(2):156-72. PubMed ID: 715469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of stimulus and recording parameters on spatial spread of excitation and masking patterns obtained with the electrically evoked compound action potential in cochlear implants.
    Hughes ML; Stille LJ
    Ear Hear; 2010 Oct; 31(5):679-92. PubMed ID: 20505513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric-acoustic forward masking in cochlear implant users with ipsilateral residual hearing.
    Imsiecke M; Krüger B; Büchner A; Lenarz T; Nogueira W
    Hear Res; 2018 Jul; 364():25-37. PubMed ID: 29673567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pure-Tone Masking Patterns for Monopolar and Phantom Electrical Stimulation in Cochlear Implants.
    Saoji AA; Koka K; Litvak LM; Finley CC
    Ear Hear; 2018; 39(1):124-130. PubMed ID: 28700446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves.
    Bierer JA; Faulkner KF
    Ear Hear; 2010 Apr; 31(2):247-58. PubMed ID: 20090533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Psychophysical recovery from pulse-train forward masking in electric hearing.
    Nelson DA; Donaldson GS
    J Acoust Soc Am; 2002 Dec; 112(6):2932-47. PubMed ID: 12509014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of suppression in the upward spread of masking.
    Yasin I; Plack CJ
    J Assoc Res Otolaryngol; 2005 Dec; 6(4):368-77. PubMed ID: 16261268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forward masking in different cochlear implant systems.
    Boëx C; Kós MI; Pelizzone M
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2058-65. PubMed ID: 14587605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Psychophysical assessment of the level-dependent representation of high-frequency spectral notches in the peripheral auditory system.
    Alves-Pinto A; Lopez-Poveda EA
    J Acoust Soc Am; 2008 Jul; 124(1):409-21. PubMed ID: 18646986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency and level dependent masking of the multiple auditory steady-state response in the bottlenose dolphin (Tursiops truncatus).
    Branstetter BK; Finneran JJ; Houser DS
    J Acoust Soc Am; 2008 May; 123(5):2928-35. PubMed ID: 18529209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backward, simultaneous, and forward masking as a function of signal delay and frequency.
    Soderquist DR; Carstens AA; Frank GJ
    J Aud Res; 1981 Oct; 21(4):227-45. PubMed ID: 7186500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.