These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 17086426)
1. Conservation and divergence of candidate class B genes in Akebia trifoliata (Lardizabalaceae). Shan H; Su K; Lu W; Kong H; Chen Z; Meng Z Dev Genes Evol; 2006 Dec; 216(12):785-95. PubMed ID: 17086426 [TBL] [Abstract][Full Text] [Related]
2. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum. Sun W; Huang W; Li Z; Song C; Liu D; Liu Y; Hayward A; Liu Y; Huang H; Wang Y Ann Bot; 2014 Mar; 113(4):653-68. PubMed ID: 24532606 [TBL] [Abstract][Full Text] [Related]
3. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events. Hernández-Hernández T; Martínez-Castilla LP; Alvarez-Buylla ER Mol Biol Evol; 2007 Feb; 24(2):465-81. PubMed ID: 17135333 [TBL] [Abstract][Full Text] [Related]
4. Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia. Geuten K; Becker A; Kaufmann K; Caris P; Janssens S; Viaene T; Theissen G; Smets E Plant J; 2006 Aug; 47(4):501-18. PubMed ID: 16856983 [TBL] [Abstract][Full Text] [Related]
5. Extended expression of B-class MADS-box genes in the paleoherb Asarum caudigerum. Zhao YH; Möller M; Yang JB; Liu TS; Zhao JF; Dong LN; Zhang JP; Li CY; Wang GY; Li DZ Planta; 2010 Jan; 231(2):265-76. PubMed ID: 19904556 [TBL] [Abstract][Full Text] [Related]
6. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Kim S; Koh J; Yoo MJ; Kong H; Hu Y; Ma H; Soltis PS; Soltis DE Plant J; 2005 Sep; 43(5):724-44. PubMed ID: 16115069 [TBL] [Abstract][Full Text] [Related]
7. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development. Liu C; Zhang J; Zhang N; Shan H; Su K; Zhang J; Meng Z; Kong H; Chen Z Mol Biol Evol; 2010 Jul; 27(7):1598-611. PubMed ID: 20147438 [TBL] [Abstract][Full Text] [Related]
8. The expression and phylogenetic analysis of four AP3-like paralogs in the stamens, carpels, and single-whorl perianth of the paleoherb Asarum caudigerum. Zhao YH; Larson-Rabin Z; Li DZ; Wang GY; Peng S; Li CY Mol Biol Rep; 2013 Aug; 40(8):4691-9. PubMed ID: 23657595 [TBL] [Abstract][Full Text] [Related]
9. Pistillata--duplications as a mode for floral diversification in (Basal) asterids. Viaene T; Vekemans D; Irish VF; Geeraerts A; Huysmans S; Janssens S; Smets E; Geuten K Mol Biol Evol; 2009 Nov; 26(11):2627-45. PubMed ID: 19679752 [TBL] [Abstract][Full Text] [Related]
10. 'Living stones' reveal alternative petal identity programs within the core eudicots. Brockington SF; Rudall PJ; Frohlich MW; Oppenheimer DG; Soltis PS; Soltis DE Plant J; 2012 Jan; 69(2):193-203. PubMed ID: 21951031 [TBL] [Abstract][Full Text] [Related]
11. Partial redundancy and functional specialization of E-class SEPALLATA genes in an early-diverging eudicot. Soza VL; Snelson CD; Hewett Hazelton KD; Di Stilio VS Dev Biol; 2016 Nov; 419(1):143-155. PubMed ID: 27502434 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the APETALA3- and PISTILLATA-like genes in Hedyosmum orientale (Chloranthaceae) provides insight into the evolution of the floral homeotic B-function in angiosperms. Liu S; Sun Y; Du X; Xu Q; Wu F; Meng Z Ann Bot; 2013 Nov; 112(7):1239-51. PubMed ID: 23956161 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the MADS-Box Gene Family in Zhong S; Yang H; Guan J; Shen J; Ren T; Li Z; Tan F; Li Q; Luo P Genes (Basel); 2022 Oct; 13(10):. PubMed ID: 36292662 [TBL] [Abstract][Full Text] [Related]
14. Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification. Yockteng R; Almeida AM; Morioka K; Alvarez-Buylla ER; Specht CD Mol Biol Evol; 2013 Nov; 30(11):2401-22. PubMed ID: 23938867 [TBL] [Abstract][Full Text] [Related]
15. Gene duplication and loss in a MADS box gene transcription factor circuit. Lee HL; Irish VF Mol Biol Evol; 2011 Dec; 28(12):3367-80. PubMed ID: 21712469 [TBL] [Abstract][Full Text] [Related]
16. Characterization of candidate class A, B and E floral homeotic genes from the perianthless basal angiosperm Chloranthus spicatus (Chloranthaceae). Li GS; Meng Z; Kong HZ; Chen ZD; Theissen G; Lu AM Dev Genes Evol; 2005 Sep; 215(9):437-49. PubMed ID: 16028057 [TBL] [Abstract][Full Text] [Related]
17. C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. Hsu HF; Hsieh WP; Chen MK; Chang YY; Yang CH Plant Cell Physiol; 2010 Jun; 51(6):1029-45. PubMed ID: 20395287 [TBL] [Abstract][Full Text] [Related]
18. Duplicated C-class MADS-box genes reveal distinct roles in gynostemium development in Cymbidium ensifolium (Orchidaceae). Wang SY; Lee PF; Lee YI; Hsiao YY; Chen YY; Pan ZJ; Liu ZJ; Tsai WC Plant Cell Physiol; 2011 Mar; 52(3):563-77. PubMed ID: 21278368 [TBL] [Abstract][Full Text] [Related]
19. The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Pan ZJ; Cheng CC; Tsai WC; Chung MC; Chen WH; Hu JM; Chen HH Plant Cell Physiol; 2011 Sep; 52(9):1515-31. PubMed ID: 21757456 [TBL] [Abstract][Full Text] [Related]