These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 17086427)

  • 1. Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera): I. Phonotaxis to elevated and depressed sound sources.
    Rheinlaender J; Hartbauer M; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Mar; 193(3):313-20. PubMed ID: 17086427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera): II. Phonotaxis to elevated sound sources on a walking compensator.
    Ofner E; Rheinlaender J; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Mar; 193(3):321-30. PubMed ID: 17273848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera): III. Peripheral directionality and central nervous processing of spatial cues.
    Kostarakos K; Rheinlaender J; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Nov; 193(11):1115-23. PubMed ID: 17713767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of visual to auditory cues during phonotactic approach in the phaneropterine bushcricket Poecilimon affinis.
    von Helversen D; Wendler G
    J Comp Physiol A; 2000; 186(7-8):729-36. PubMed ID: 11016788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory lateralization in bushcrickets: a new dichotic paradigm.
    Rheinlaender J; Shen JX; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Apr; 192(4):389-97. PubMed ID: 16362304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonotactic response of female crickets on the Kramer treadmill: methodology, sensory and behavioural implications.
    Verburgt L; Ferguson JW; Weber T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jan; 194(1):79-96. PubMed ID: 18049821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Male recognition mechanism for female responses implies a dilemma for their localisation in a phaneropterine bushcricket.
    Helversen DV; Schul J; Kleindienst HU
    J Comp Physiol A; 2000-2001; 186(12):1153-8. PubMed ID: 11288826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus revealed with a fast trackball system.
    Hedwig B; Poulet JF
    J Exp Biol; 2005 Mar; 208(Pt 5):915-27. PubMed ID: 15755890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonotactic flight of the parasitoid fly Emblemasoma auditrix (Diptera: Sarcophagidae).
    Tron N; Lakes-Harlan R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Jan; 203(1):45-56. PubMed ID: 27878378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertical and horizontal sound localization in primates.
    Brown CH; Schessler T; Moody D; Stebbins W
    J Acoust Soc Am; 1982 Dec; 72(6):1804-11. PubMed ID: 7153427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex auditory behaviour emerges from simple reactive steering.
    Hedwig B; Poulet JF
    Nature; 2004 Aug; 430(7001):781-5. PubMed ID: 15306810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat.
    Malhotra S; Lomber SG
    J Neurophysiol; 2007 Jan; 97(1):26-43. PubMed ID: 17035367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial hearing in Cope's gray treefrog: I. Open and closed loop experiments on sound localization in the presence and absence of noise.
    Caldwell MS; Bee MA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Apr; 200(4):265-84. PubMed ID: 24504182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative micromechanics of bushcricket ears with and without a specialized auditory fovea region in the crista acustica.
    Scherberich J; Taszus R; Stoessel A; Nowotny M
    Proc Biol Sci; 2020 Jun; 287(1929):20200909. PubMed ID: 32576108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new microcomputer-based method for measuring walking phonotaxis in field crickets (Gryllidae).
    Doherty JA; Pires A
    J Exp Biol; 1987 Jul; 130():425-32. PubMed ID: 3625123
    [No Abstract]   [Full Text] [Related]  

  • 16. [Model of the bicercal mechanism of constant direction perception of a mechano-acoustic signal in the insect].
    Rozhkova GI
    Neirofiziologiia; 1987; 19(1):53-61. PubMed ID: 3574553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Position-dependent hearing in three species of bushcrickets (Tettigoniidae, Orthoptera).
    Lakes-Harlan R; Scherberich J
    R Soc Open Sci; 2015 Jun; 2(6):140473. PubMed ID: 26543574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel acoustic-vibratory multimodal duet.
    Rajaraman K; Godthi V; Pratap R; Balakrishnan R
    J Exp Biol; 2015 Oct; 218(Pt 19):3042-50. PubMed ID: 26254322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of spatial adaptation on auditory motion processing.
    Getzmann S; Lewald J
    Hear Res; 2011 Feb; 272(1-2):21-9. PubMed ID: 21108997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel schemes for hearing and orientation in insects.
    Robert D; Göpfert MC
    Curr Opin Neurobiol; 2002 Dec; 12(6):715-20. PubMed ID: 12490264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.