These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 17087481)
1. Direct in situ measurement of cell turgor in grape (Vitis vinifera L.) berries during development and in response to plant water deficits. Thomas TR; Matthews MA; Shackel KA Plant Cell Environ; 2006 May; 29(5):993-1001. PubMed ID: 17087481 [TBL] [Abstract][Full Text] [Related]
2. Ripening grape berries remain hydraulically connected to the shoot. Keller M; Smith JP; Bondada BR J Exp Bot; 2006; 57(11):2577-87. PubMed ID: 16868045 [TBL] [Abstract][Full Text] [Related]
3. Functional xylem in the post-veraison grape berry. Bondada BR; Matthews MA; Shackel KA J Exp Bot; 2005 Nov; 56(421):2949-57. PubMed ID: 16207748 [TBL] [Abstract][Full Text] [Related]
4. Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development. Krasnow M; Matthews M; Shackel K J Exp Bot; 2008; 59(4):849-59. PubMed ID: 18272917 [TBL] [Abstract][Full Text] [Related]
5. Fruit ripening in Vitis vinifera: apoplastic solute accumulation accounts for pre-veraison turgor loss in berries. Wada H; Shackel KA; Matthews MA Planta; 2008 May; 227(6):1351-61. PubMed ID: 18317799 [TBL] [Abstract][Full Text] [Related]
6. Cell death in grape berries: varietal differences linked to xylem pressure and berry weight loss. Tilbrook J; Tyerman SD Funct Plant Biol; 2008 May; 35(3):173-184. PubMed ID: 32688771 [TBL] [Abstract][Full Text] [Related]
7. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. Cv. cabernet sauvignon grape berries. Bindon KA; Dry PR; Loveys BR J Agric Food Chem; 2007 May; 55(11):4493-500. PubMed ID: 17469842 [TBL] [Abstract][Full Text] [Related]
8. Hydraulic connection of grape berries to the vine: varietal differences in water conductance into and out of berries, and potential for backflow. Tilbrook J; Tyerman SD Funct Plant Biol; 2009 Jun; 36(6):541-550. PubMed ID: 32688668 [TBL] [Abstract][Full Text] [Related]
9. The peripheral xylem of grapevine (Vitis vinifera). 1. Structural integrity in post-veraison berries. Chatelet DS; Rost TL; Shackel KA; Matthews MA J Exp Bot; 2008; 59(8):1987-96. PubMed ID: 18440931 [TBL] [Abstract][Full Text] [Related]
10. Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit. Dai ZW; Léon C; Feil R; Lunn JE; Delrot S; Gomès E J Exp Bot; 2013 Mar; 64(5):1345-55. PubMed ID: 23364938 [TBL] [Abstract][Full Text] [Related]
11. Seasonal pattern of apoplastic solute accumulation and loss of cell turgor during ripening of Vitis vinifera fruit under field conditions. Wada H; Matthews MA; Shackel KA J Exp Bot; 2009; 60(6):1773-81. PubMed ID: 19386616 [TBL] [Abstract][Full Text] [Related]
12. Mesocarp cell turgor in Vitis vinifera L. berries throughout development and its relation to firmness, growth, and the onset of ripening. Thomas TR; Shackel KA; Matthews MA Planta; 2008 Nov; 228(6):1067-76. PubMed ID: 18797922 [TBL] [Abstract][Full Text] [Related]
13. Comparison of isohydric and anisohydric Vitis vinifera L. cultivars reveals a fine balance between hydraulic resistances, driving forces and transpiration in ripening berries. Scharwies JD; Tyerman SD Funct Plant Biol; 2017 Feb; 44(3):324-338. PubMed ID: 32480567 [TBL] [Abstract][Full Text] [Related]
14. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. Davies C; Shin R; Liu W; Thomas MR; Schachtman DP J Exp Bot; 2006; 57(12):3209-16. PubMed ID: 16936223 [TBL] [Abstract][Full Text] [Related]
15. Cessation of berry growth coincides with leaf complete stomatal closure at pre-veraison for grapevine (Vitis vinifera) subjected to progressive drought stress. Knipfer T; Wilson N; Jorgensen-Bambach NE; McElrone AJ; Bartlett MK; Castellarin SD Ann Bot; 2023 Nov; 132(5):979-988. PubMed ID: 37742279 [TBL] [Abstract][Full Text] [Related]
16. Effects of vine top shading on the accumulation of C6/C9 compounds in 'Cabernet Sauvignon' (Vitis vinifera L.) grape berries in northwestern China. Zhang Z; Qiao D; He L; Pan Q; Wang S J Sci Food Agric; 2022 Mar; 102(5):1862-1871. PubMed ID: 34468988 [TBL] [Abstract][Full Text] [Related]
17. Impact of vine water status on berry mass and berry tissue development of Cabernet franc (Vitis vinifera L.), assessed at berry level. Triolo R; Roby JP; Pisciotta A; Di Lorenzo R; van Leeuwen C J Sci Food Agric; 2019 Oct; 99(13):5711-5719. PubMed ID: 31149732 [TBL] [Abstract][Full Text] [Related]
18. Cell wall and metabolite composition of berries of Vitis vinifera (L.) cv. Thompson Seedless with different firmness. Zepeda B; Olmedo P; Ejsmentewicz T; Sepúlveda P; Balic I; Balladares C; Delgado-Rioseco J; Fuentealba C; Moreno AA; Defilippi BG; Meneses C; Pedreschi R; Campos-Vargas R Food Chem; 2018 Dec; 268():492-497. PubMed ID: 30064789 [TBL] [Abstract][Full Text] [Related]
19. Post-veraison irreversible stem shrinkage in grapevine (Vitis vinifera) is caused by periderm formation. Van de Wal BAE; Leroux O; Steppe K Tree Physiol; 2018 May; 38(5):745-754. PubMed ID: 29244181 [TBL] [Abstract][Full Text] [Related]
20. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem. Keller M; Zhang Y; Shrestha PM; Biondi M; Bondada BR Plant Cell Environ; 2015 Jun; 38(6):1048-59. PubMed ID: 25293537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]