These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 17087481)
21. Water deficit before veraison is crucial in regulating berry VOCs concentration in Sangiovese grapevines. Palai G; Caruso G; Gucci R; D'Onofrio C Front Plant Sci; 2023; 14():1117572. PubMed ID: 36890905 [TBL] [Abstract][Full Text] [Related]
23. Long-term impact of deficit irrigation on the physical quality of berries in 'Crimson Seedless' table grapes. Conesa MR; de la Rosa JM; Artés-Hernández F; Dodd IC; Domingo R; Pérez-Pastor A J Sci Food Agric; 2015 Sep; 95(12):2510-20. PubMed ID: 25367131 [TBL] [Abstract][Full Text] [Related]
24. Within-Vineyard, Within-Vine, and Within-Bunch Variability of the Rotundone Concentration in Berries of Vitis vinifera L. cv. Shiraz. Zhang P; Barlow S; Krstic M; Herderich M; Fuentes S; Howell K J Agric Food Chem; 2015 May; 63(17):4276-83. PubMed ID: 25891266 [TBL] [Abstract][Full Text] [Related]
25. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Murcia G; Pontin M; Reinoso H; Baraldi R; Bertazza G; Gómez-Talquenca S; Bottini R; Piccoli PN Physiol Plant; 2016 Mar; 156(3):323-37. PubMed ID: 26411544 [TBL] [Abstract][Full Text] [Related]
26. Grape berry plasma membrane proteome analysis and its differential expression during ripening. Zhang J; Ma H; Feng J; Zeng L; Wang Z; Chen S J Exp Bot; 2008; 59(11):2979-90. PubMed ID: 18550598 [TBL] [Abstract][Full Text] [Related]
27. Effect of lime-induced leaf chlorosis on ochratoxin A, trans-resveratrol, and epsilon-viniferin production in grapevine (Vitis vinifera L.) berries infected by Aspergillus carbonarius. Bavaresco L; Vezzulli S; Civardi S; Gatti M; Battilani P; Pietri A; Ferrari F J Agric Food Chem; 2008 Mar; 56(6):2085-9. PubMed ID: 18290620 [TBL] [Abstract][Full Text] [Related]
28. The contribution of flowering time and seed content to uneven ripening initiation among fruits within Vitis vinifera L. cv. Pinot noir clusters. Vondras AM; Gouthu S; Schmidt JA; Petersen AR; Deluc LG Planta; 2016 May; 243(5):1191-202. PubMed ID: 26874729 [TBL] [Abstract][Full Text] [Related]
29. Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera 'Cabernet Sauvignon' berries during véraison. Xu F; Xi ZM; Zhang H; Zhang CJ; Zhang ZW Plant Physiol Biochem; 2015 Sep; 94():197-208. PubMed ID: 26113159 [TBL] [Abstract][Full Text] [Related]
30. The Synthesis and Accumulation of Resveratrol Are Associated with Veraison and Abscisic Acid Concentration in Beihong ( Wang J; Wang S; Liu G; Edwards EJ; Duan W; Li S; Wang L Front Plant Sci; 2016; 7():1605. PubMed ID: 27857716 [TBL] [Abstract][Full Text] [Related]
31. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine. Böttcher C; Burbidge CA; Boss PK; Davies C BMC Plant Biol; 2015 Sep; 15():223. PubMed ID: 26377914 [TBL] [Abstract][Full Text] [Related]
32. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis. Musingarabwi DM; Nieuwoudt HH; Young PR; Eyéghè-Bickong HA; Vivier MA Food Chem; 2016 Jan; 190():253-262. PubMed ID: 26212968 [TBL] [Abstract][Full Text] [Related]
33. Water Transport Properties of the Grape Pedicel during Fruit Development: Insights into Xylem Anatomy and Function Using Microtomography. Knipfer T; Fei J; Gambetta GA; McElrone AJ; Shackel KA; Matthews MA Plant Physiol; 2015 Aug; 168(4):1590-602. PubMed ID: 26077763 [TBL] [Abstract][Full Text] [Related]
34. Localization of stilbene synthase in Vitis vinifera L. during berry development. Fornara V; Onelli E; Sparvoli F; Rossoni M; Aina R; Marino G; Citterio S Protoplasma; 2008; 233(1-2):83-93. PubMed ID: 18615235 [TBL] [Abstract][Full Text] [Related]
35. The Effect of Water Deficit on Two Greek Alatzas A; Theocharis S; Miliordos DE; Leontaridou K; Kanellis AK; Kotseridis Y; Hatzopoulos P; Koundouras S Plants (Basel); 2021 Sep; 10(9):. PubMed ID: 34579479 [TBL] [Abstract][Full Text] [Related]
36. The peripheral xylem of grapevine (Vitis vinifera) berries. 2. Anatomy and development. Chatelet DS; Rost TL; Matthews MA; Shackel KA J Exp Bot; 2008; 59(8):1997-2007. PubMed ID: 18440930 [TBL] [Abstract][Full Text] [Related]
37. Tissue-Specific Hormonal Variations in Grapes of Irrigated and Non-irrigated Grapevines ( Ribalta-Pizarro C; Muñoz P; Munné-Bosch S Front Plant Sci; 2021; 12():621587. PubMed ID: 33597962 [TBL] [Abstract][Full Text] [Related]
38. Water use efficiency in Sangiovese grapes (Vitis vinifera L.) subjected to water stress before veraison: different levels of assessment lead to different conclusions. Merli MC; Gatti M; Galbignani M; Bernizzoni F; Magnanini E; Poni S Funct Plant Biol; 2015 Feb; 42(2):198-208. PubMed ID: 32480665 [TBL] [Abstract][Full Text] [Related]
39. A grape berry (Vitis vinifera L.) cation/proton antiporter is associated with berry ripening. Hanana M; Cagnac O; Yamaguchi T; Hamdi S; Ghorbel A; Blumwald E Plant Cell Physiol; 2007 Jun; 48(6):804-11. PubMed ID: 17463051 [TBL] [Abstract][Full Text] [Related]
40. The role of fruit exposure in the late season decline of grape berry mesocarp cell vitality. Clarke SJ; Rogiers SY Plant Physiol Biochem; 2019 Feb; 135():69-76. PubMed ID: 30508706 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]