BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 17087757)

  • 1. Transition probability/Markov chain analyses of DNAPL source zones and plumes.
    Maji R; Sudicky EA; Panday S; Teutsch G
    Ground Water; 2006; 44(6):853-63. PubMed ID: 17087757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer.
    Maji R; Sudicky EA
    J Contam Hydrol; 2008 Nov; 102(1-2):105-19. PubMed ID: 18929427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of a DNAPL source zone in a porous aquifer using the Partitioning Interwell Tracer Test and an inverse modelling approach.
    Dridi L; Pollet I; Razakarisoa O; Schäfer G
    J Contam Hydrol; 2009 Jun; 107(1-2):22-44. PubMed ID: 19395120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNAPL distribution in the source zone: effect of soil structure and uncertainty reduction with increased sampling density.
    Pantazidou M; Liu K
    J Contam Hydrol; 2008 Feb; 96(1-4):169-86. PubMed ID: 18187230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous optimization of dense non-aqueous phase liquid (DNAPL) source and contaminant plume remediation.
    Mayer A; Endres KL
    J Contam Hydrol; 2007 May; 91(3-4):288-311. PubMed ID: 17257707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative velocities of DNAPL and aqueous phase plume migration.
    Putzlocher R; Kueper BH; Reynolds DA
    J Contam Hydrol; 2006 Dec; 88(3-4):321-36. PubMed ID: 16979790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones.
    Heiderscheidt JL; Siegrist RL; Illangasekare TH
    J Contam Hydrol; 2008 Nov; 102(1-2):3-16. PubMed ID: 18774622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphase flow and transport through fractured heterogeneous porous media.
    Reynolds DA; Kueper BH
    J Contam Hydrol; 2004 Jul; 71(1-4):89-110. PubMed ID: 15145563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal evolution of DNAPL source and contaminant flux distribution: impacts of source mass depletion.
    Basu NB; Rao PS; Falta RW; Annable MD; Jawitz JW; Hatfield K
    J Contam Hydrol; 2008 Jan; 95(3-4):93-109. PubMed ID: 17905471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing impacts of partial mass depletion in DNAPL source zones: II. Coupling source strength functions to plume evolution.
    Falta RW; Basu N; Rao PS
    J Contam Hydrol; 2005 Sep; 79(1-2):45-66. PubMed ID: 16061307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones.
    Yang L; Wang X; Mendoza-Sanchez I; Abriola LM
    J Contam Hydrol; 2018 Apr; 211():1-14. PubMed ID: 29525038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent release into a sandy aquifer. 2. Estimation of DNAPL mass based on a multiple-component dissolution model.
    Broholm K; Feenstra S; Cherry JA
    Environ Sci Technol; 2005 Jan; 39(1):317-24. PubMed ID: 15667112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D; Chollet N; Pittet X; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2004 Oct; 74(1-4):265-82. PubMed ID: 15358496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cost optimization of DNAPL source and plume remediation under uncertainty using a semi-analytic model.
    Cardiff M; Liu X; Kitanidis PK; Parker J; Kim U
    J Contam Hydrol; 2010 Apr; 113(1-4):25-43. PubMed ID: 20185203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.
    Page JW; Soga K; Illangasekare T
    J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory investigation of flux reduction from dense non-aqueous phase liquid (DNAPL) partial source zone remediation by enhanced dissolution.
    Kaye AJ; Cho J; Basu NB; Chen X; Annable MD; Jawitz JW
    J Contam Hydrol; 2008 Nov; 102(1-2):17-28. PubMed ID: 18420303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: dissolved-plume retardation.
    Rivett MO; Allen-King RM
    J Contam Hydrol; 2003 Oct; 66(1-2):117-46. PubMed ID: 14516944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.