BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 17087928)

  • 1. Protein tyrosine and serine-threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: identification and potential functions.
    Byrum CA; Walton KD; Robertson AJ; Carbonneau S; Thomason RT; Coffman JA; McClay DR
    Dev Biol; 2006 Dec; 300(1):194-218. PubMed ID: 17087928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis.
    Kerk D; Bulgrien J; Smith DW; Barsam B; Veretnik S; Gribskov M
    Plant Physiol; 2002 Jun; 129(2):908-25. PubMed ID: 12068129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A common structural scaffold in CTD phosphatases that supports distinct catalytic mechanisms.
    Pons T; Paramonov I; Boullosa C; Ibáñez K; Rojas AM; Valencia A
    Proteins; 2014 Jan; 82(1):103-18. PubMed ID: 23900790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RTK and TGF-beta signaling pathways genes in the sea urchin genome.
    Lapraz F; Röttinger E; Duboc V; Range R; Duloquin L; Walton K; Wu SY; Bradham C; Loza MA; Hibino T; Wilson K; Poustka A; McClay D; Angerer L; Gache C; Lepage T
    Dev Biol; 2006 Dec; 300(1):132-52. PubMed ID: 17084834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant protein phosphatases: What do we know about their mechanism of action?
    Bheri M; Mahiwal S; Sanyal SK; Pandey GK
    FEBS J; 2021 Feb; 288(3):756-785. PubMed ID: 32542989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein tyrosine phosphatases as novel targets in breast cancer therapy.
    Nunes-Xavier CE; Martín-Pérez J; Elson A; Pulido R
    Biochim Biophys Acta; 2013 Dec; 1836(2):211-26. PubMed ID: 23756181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonreceptor protein-tyrosine phosphatases in immune cell signaling.
    Pao LI; Badour K; Siminovitch KA; Neel BG
    Annu Rev Immunol; 2007; 25():473-523. PubMed ID: 17291189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EmbR, a regulatory protein with ATPase activity, is a substrate of multiple serine/threonine kinases and phosphatase in Mycobacterium tuberculosis.
    Sharma K; Gupta M; Krupa A; Srinivasan N; Singh Y
    FEBS J; 2006 Jun; 273(12):2711-21. PubMed ID: 16817899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survey, analysis and genetic organization of genes encoding eukaryotic-like signaling proteins on a cyanobacterial genome.
    Zhang CC; Gonzalez L; Phalip V
    Nucleic Acids Res; 1998 Aug; 26(16):3619-25. PubMed ID: 9685474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait.
    Shi L; Potts M; Kennelly PJ
    FEMS Microbiol Rev; 1998 Oct; 22(4):229-53. PubMed ID: 9862122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The genomic repertoire for cell cycle control and DNA metabolism in S. purpuratus.
    Fernandez-Guerra A; Aze A; Morales J; Mulner-Lorillon O; Cosson B; Cormier P; Bradham C; Adams N; Robertson AJ; Marzluff WF; Coffman JA; Genevière AM
    Dev Biol; 2006 Dec; 300(1):238-51. PubMed ID: 17078944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure/function studies of Ser/Thr and Tyr protein phosphorylation in Mycobacterium tuberculosis.
    Greenstein AE; Grundner C; Echols N; Gay LM; Lombana TN; Miecskowski CA; Pullen KE; Sung PY; Alber T
    J Mol Microbiol Biotechnol; 2005; 9(3-4):167-81. PubMed ID: 16415590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential.
    Wehenkel A; Bellinzoni M; Graña M; Duran R; Villarino A; Fernandez P; Andre-Leroux G; England P; Takiff H; Cerveñansky C; Cole ST; Alzari PM
    Biochim Biophys Acta; 2008 Jan; 1784(1):193-202. PubMed ID: 17869195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Ser/Thr protein phosphatases in cell death regulation.
    Sun H; Wang Y
    Physiology (Bethesda); 2012 Feb; 27(1):43-52. PubMed ID: 22311969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Ser/Thr phosphatases--the ugly ducklings of cell signalling.
    Brautigan DL
    FEBS J; 2013 Jan; 280(2):324-45. PubMed ID: 22519956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lineage-specific expansions provide genomic complexity among sea urchin GTPases.
    Beane WS; Voronina E; Wessel GM; McClay DR
    Dev Biol; 2006 Dec; 300(1):165-79. PubMed ID: 17014838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the multifunctional protein tyrosine phosphatase family.
    Pils B; Schultz J
    Mol Biol Evol; 2004 Apr; 21(4):625-31. PubMed ID: 14739250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sea urchin Forkhead gene family: phylogeny and embryonic expression.
    Tu Q; Brown CT; Davidson EH; Oliveri P
    Dev Biol; 2006 Dec; 300(1):49-62. PubMed ID: 17081512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies to make protein serine/threonine (PP1, calcineurin) and tyrosine phosphatases (PTP1B) druggable: achieving specificity by targeting substrate and regulatory protein interaction sites.
    Peti W; Page R
    Bioorg Med Chem; 2015 Jun; 23(12):2781-5. PubMed ID: 25771485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.