BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 17087928)

  • 21. Sublethal levels of oxidant stress stimulate multiple serine/threonine kinases and suppress protein phosphatases in Jurkat T cells.
    Whisler RL; Goyette MA; Grants IS; Newhouse YG
    Arch Biochem Biophys; 1995 May; 319(1):23-35. PubMed ID: 7771789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways.
    Saini LK; Bheri M; Pandey GK
    Adv Protein Chem Struct Biol; 2023; 134():307-370. PubMed ID: 36858740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Receptor and nonreceptor protein tyrosine phosphatases in the nervous system.
    Paul S; Lombroso PJ
    Cell Mol Life Sci; 2003 Nov; 60(11):2465-82. PubMed ID: 14625689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The structure and mechanism of protein phosphatases: insights into catalysis and regulation.
    Barford D; Das AK; Egloff MP
    Annu Rev Biophys Biomol Struct; 1998; 27():133-64. PubMed ID: 9646865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The protein tyrosine kinases of the sea urchin Anthocidaris crassispina.
    Sakuma M; Onodera H; Suyemitsu T; Yamasu K
    Zoolog Sci; 1997 Dec; 14(6):941-6. PubMed ID: 9520636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adeno-associated virus 2-mediated gene transfer: role of a cellular serine/threonine protein phosphatase in augmenting transduction efficiency.
    Zhao W; Wu J; Zhong L; Srivastava A
    Gene Ther; 2007 Mar; 14(6):545-50. PubMed ID: 17122803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution of protein phosphatases in plants and animals.
    Moorhead GB; De Wever V; Templeton G; Kerk D
    Biochem J; 2009 Jan; 417(2):401-9. PubMed ID: 19099538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The human CL100 gene encodes a Tyr/Thr-protein phosphatase which potently and specifically inactivates MAP kinase and suppresses its activation by oncogenic ras in Xenopus oocyte extracts.
    Alessi DR; Smythe C; Keyse SM
    Oncogene; 1993 Jul; 8(7):2015-20. PubMed ID: 8390041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A genome-wide survey of the evolutionarily conserved Wnt pathways in the sea urchin Strongylocentrotus purpuratus.
    Croce JC; Wu SY; Byrum C; Xu R; Duloquin L; Wikramanayake AH; Gache C; McClay DR
    Dev Biol; 2006 Dec; 300(1):121-31. PubMed ID: 17069790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The sea urchin kinome: a first look.
    Bradham CA; Foltz KR; Beane WS; Arnone MI; Rizzo F; Coffman JA; Mushegian A; Goel M; Morales J; Geneviere AM; Lapraz F; Robertson AJ; Kelkar H; Loza-Coll M; Townley IK; Raisch M; Roux MM; Lepage T; Gache C; McClay DR; Manning G
    Dev Biol; 2006 Dec; 300(1):180-93. PubMed ID: 17027740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational analysis of protein tyrosine phosphatases: practical guide to bioinformatics and data resources.
    Andersen JN; Del Vecchio RL; Kannan N; Gergel J; Neuwald AF; Tonks NK
    Methods; 2005 Jan; 35(1):90-114. PubMed ID: 15588990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sea urchin metalloproteases: a genomic survey of the BMP-1/tolloid-like, MMP and ADAM families.
    Angerer L; Hussain S; Wei Z; Livingston BT
    Dev Biol; 2006 Dec; 300(1):267-81. PubMed ID: 17059814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein phosphorylation on Ser, Thr and Tyr residues in cyanobacteria.
    Zhang CC; Jang J; Sakr S; Wang L
    J Mol Microbiol Biotechnol; 2005; 9(3-4):154-66. PubMed ID: 16415589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphorylation of the myosin phosphatase target subunit by integrin-linked kinase.
    Murányi A; MacDonald JA; Deng JT; Wilson DP; Haystead TA; Walsh MP; Erdodi F; Kiss E; Wu Y; Hartshorne DJ
    Biochem J; 2002 Aug; 366(Pt 1):211-6. PubMed ID: 12030846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SH2 domain-mediated interaction of inhibitory protein tyrosine kinase Csk with protein tyrosine phosphatase-HSCF.
    Wang B; Lemay S; Tsai S; Veillette A
    Mol Cell Biol; 2001 Feb; 21(4):1077-88. PubMed ID: 11158295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cortical granule serine protease CGSP1 of the sea urchin, Strongylocentrotus purpuratus, is autocatalytic and contains a low-density lipoprotein receptor-like domain.
    Haley SA; Wessel GM
    Dev Biol; 1999 Jul; 211(1):1-10. PubMed ID: 10373300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The protein phosphatases of Synechocystis sp. strain PCC 6803: open reading frames sll1033 and sll1387 encode enzymes that exhibit both protein-serine and protein-tyrosine phosphatase activity in vitro.
    Li R; Potters MB; Shi L; Kennelly PJ
    J Bacteriol; 2005 Sep; 187(17):5877-84. PubMed ID: 16109928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif.
    Pulido R; Zúñiga A; Ullrich A
    EMBO J; 1998 Dec; 17(24):7337-50. PubMed ID: 9857190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation.
    Hutter D; Chen P; Barnes J; Liu Y
    Biochem J; 2000 Nov; 352 Pt 1(Pt 1):155-63. PubMed ID: 11062068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutational analysis of ribosomal S6 kinase 2 shows differential regulation of its kinase activity from that of ribosomal S6 kinase 1.
    Phin S; Kupferwasser D; Lam J; Lee-Fruman KK
    Biochem J; 2003 Jul; 373(Pt 2):583-91. PubMed ID: 12713446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.