BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 17087928)

  • 41. The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus.
    Robertson AJ; Croce J; Carbonneau S; Voronina E; Miranda E; McClay DR; Coffman JA
    Dev Biol; 2006 Dec; 300(1):321-34. PubMed ID: 17010332
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activation of the Jnk signaling pathway by a dual-specificity phosphatase, JSP-1.
    Shen Y; Luche R; Wei B; Gordon ML; Diltz CD; Tonks NK
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13613-8. PubMed ID: 11717427
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystal structure of PTP-SL/PTPBR7 catalytic domain: implications for MAP kinase regulation.
    Szedlacsek SE; Aricescu AR; Fulga TA; Renault L; Scheidig AJ
    J Mol Biol; 2001 Aug; 311(3):557-68. PubMed ID: 11493009
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A serine/threonine protein phosphatase-like protein, CaPTC8, from Candida albicans defines a new PPM subfamily.
    Fan J; Wu M; Jiang L; Shen SH
    Gene; 2009 Feb; 430(1-2):64-76. PubMed ID: 19049858
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development.
    Howard-Ashby M; Materna SC; Brown CT; Chen L; Cameron RA; Davidson EH
    Dev Biol; 2006 Dec; 300(1):74-89. PubMed ID: 17055477
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A one-step method to identify MAP kinase residues involved in inactivation by tyrosine- and dual-specificity protein phosphatases.
    Tárrega C; Pulido R
    Anal Biochem; 2009 Nov; 394(1):81-6. PubMed ID: 19583964
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
    Bardwell AJ; Abdollahi M; Bardwell L
    Biochem J; 2003 Mar; 370(Pt 3):1077-85. PubMed ID: 12529172
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification and biochemical characterization of a eukaryotic-type serine/threonine kinase and its cognate phosphatase in Streptococcus pyogenes: their biological functions and substrate identification.
    Jin H; Pancholi V
    J Mol Biol; 2006 Apr; 357(5):1351-72. PubMed ID: 16487973
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct suppression of TCR-mediated activation of extracellular signal-regulated kinase by leukocyte protein tyrosine phosphatase, a tyrosine-specific phosphatase.
    Oh-hora M; Ogata M; Mori Y; Adachi M; Imai K; Kosugi A; Hamaoka T
    J Immunol; 1999 Aug; 163(3):1282-8. PubMed ID: 10415025
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Altered regulation of SHP-2 and PTP 1B tyrosine phosphatases in cystic kidneys from bcl-2 -/- mice.
    Sorenson CM; Sheibani N
    Am J Physiol Renal Physiol; 2002 Mar; 282(3):F442-50. PubMed ID: 11832424
    [TBL] [Abstract][Full Text] [Related]  

  • 51. C.el Phosphatome: A Catalogue of Actual and Pseudo Phosphatases Based on In-Silico Studies in Caenorhabditis elegans.
    Fatima S; Shukla S; Nazir A
    Protein J; 2018 Dec; 37(6):572-580. PubMed ID: 30242660
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intermediary metabolism in sea urchin: the first inferences from the genome sequence.
    Goel M; Mushegian A
    Dev Biol; 2006 Dec; 300(1):282-92. PubMed ID: 16979151
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative studies on particulate acid phosphatases in sea urchin eggs.
    Yokota Y; Nakano E
    Comp Biochem Physiol B; 1982; 71(4):563-7. PubMed ID: 7083814
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin.
    Mann K; Poustka AJ; Mann M
    Proteome Sci; 2010 Feb; 8(1):6. PubMed ID: 20181113
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genomics and evolution of protein phosphatases.
    Chen MJ; Dixon JE; Manning G
    Sci Signal; 2017 Apr; 10(474):. PubMed ID: 28400531
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Serine/threonine kinases and tyrosine phosphatases that act on the insulin receptor.
    Sale GJ
    Biochem Soc Trans; 1992 Aug; 20(3):664-70. PubMed ID: 1330783
    [No Abstract]   [Full Text] [Related]  

  • 57. Receptor type protein tyrosine phosphatases (RPTPs) - roles in signal transduction and human disease.
    Xu Y; Fisher GJ
    J Cell Commun Signal; 2012 Aug; 6(3):125-38. PubMed ID: 22851429
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The chemical defensome: environmental sensing and response genes in the Strongylocentrotus purpuratus genome.
    Goldstone JV; Hamdoun A; Cole BJ; Howard-Ashby M; Nebert DW; Scally M; Dean M; Epel D; Hahn ME; Stegeman JJ
    Dev Biol; 2006 Dec; 300(1):366-84. PubMed ID: 17097629
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein tyrosine phosphatases in higher plants.
    Luan S; Ting J; Gupta R
    New Phytol; 2001 Jul; 151(1):155-164. PubMed ID: 33873388
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Serine/threonine protein phosphatases type 2A and their roles in stress signaling.
    País SM; Téllez-Iñón MT; Capiati DA
    Plant Signal Behav; 2009 Nov; 4(11):1013-5. PubMed ID: 20009558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.