BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17088231)

  • 21. Soluble amyloid precursor protein alpha reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats.
    Thornton E; Vink R; Blumbergs PC; Van Den Heuvel C
    Brain Res; 2006 Jun; 1094(1):38-46. PubMed ID: 16697978
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prevalence of self-reported movement dysfunction among young adults with a history of ecstasy and methamphetamine use.
    Todd G; Burns L; Pearson-Dennett V; Esterman A; Faulkner PL; Wilcox RA; Thewlis D; Vogel AP; White JM
    Drug Alcohol Depend; 2019 Dec; 205():107595. PubMed ID: 31600615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of βII-Spectrin Protein by Calpain-2 and Caspase-3 Under Neurotoxic and Traumatic Brain Injury Conditions.
    Kobeissy FH; Liu MC; Yang Z; Zhang Z; Zheng W; Glushakova O; Mondello S; Anagli J; Hayes RL; Wang KK
    Mol Neurobiol; 2015 Aug; 52(1):696-709. PubMed ID: 25270371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived alphaII-spectrin in cerebral spinal fluid after middle cerebral artery occlusion in rats.
    Pike BR; Flint J; Dave JR; Lu XC; Wang KK; Tortella FC; Hayes RL
    J Cereb Blood Flow Metab; 2004 Jan; 24(1):98-106. PubMed ID: 14688621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MDMA in humans: factors which affect the neuropsychobiological profiles of recreational ecstasy users, the integrative role of bioenergetic stress.
    Parrott AC
    J Psychopharmacol; 2006 Mar; 20(2):147-63. PubMed ID: 16510474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal and spatial profile of Bid cleavage after experimental traumatic brain injury.
    Franz G; Beer R; Intemann D; Krajewski S; Reed JC; Engelhardt K; Pike BR; Hayes RL; Wang KK; Schmutzhard E; Kampfl A
    J Cereb Blood Flow Metab; 2002 Aug; 22(8):951-8. PubMed ID: 12172380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The confounding problem of polydrug use in recreational ecstasy/MDMA users: a brief overview.
    Gouzoulis-Mayfrank E; Daumann J
    J Psychopharmacol; 2006 Mar; 20(2):188-93. PubMed ID: 16510477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can the severity of dependence scale be usefully applied to 'ecstasy'?
    Bruno R; Matthews AJ; Topp L; Degenhardt L; Gomez R; Dunn M
    Neuropsychobiology; 2009; 60(3-4):137-47. PubMed ID: 19893331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Caffeine promotes hyperthermia and serotonergic loss following co-administration of the substituted amphetamines, MDMA ("Ecstasy") and MDA ("Love").
    McNamara R; Kerans A; O'Neill B; Harkin A
    Neuropharmacology; 2006 Jan; 50(1):69-80. PubMed ID: 16188283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice.
    Thompson SN; Gibson TR; Thompson BM; Deng Y; Hall ED
    Exp Neurol; 2006 Sep; 201(1):253-65. PubMed ID: 16814284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methamphetamine and MDMA (ecstasy) neurotoxicity: 'of mice and men'.
    Itzhak Y; Achat-Mendes C
    IUBMB Life; 2004 May; 56(5):249-55. PubMed ID: 15370888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MDMA ("ecstasy") and neurotoxicity.
    Mithoefer M; Jerome L; Doblin R
    Science; 2003 Jun; 300(5625):1504-5; author reply 1504-5. PubMed ID: 12791964
    [No Abstract]   [Full Text] [Related]  

  • 33. Ecstasy: pharmacology and neurotoxicity.
    Morton J
    Curr Opin Pharmacol; 2005 Feb; 5(1):79-86. PubMed ID: 15661630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in leptin, ghrelin, growth hormone and neuropeptide-Y after an acute model of MDMA and methamphetamine exposure in rats.
    Kobeissy FH; Jeung JA; Warren MW; Geier JE; Gold MS
    Addict Biol; 2008 Mar; 13(1):15-25. PubMed ID: 17910739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuroimaging findings with MDMA/ecstasy: technical aspects, conceptual issues and future prospects.
    Reneman L; de Win MM; van den Brink W; Booij J; den Heeten GJ
    J Psychopharmacol; 2006 Mar; 20(2):164-75. PubMed ID: 16510475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymatic-nonenzymatic cellular antioxidant defense systems response and immunohistochemical detection of MDMA, VMAT2, HSP70, and apoptosis as biomarkers for MDMA (Ecstasy) neurotoxicity.
    Riezzo I; Cerretani D; Fiore C; Bello S; Centini F; D'Errico S; Fiaschi AI; Giorgi G; Neri M; Pomara C; Turillazzi E; Fineschi V
    J Neurosci Res; 2010 Mar; 88(4):905-16. PubMed ID: 19798748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MDMA ('Ecstasy') and methamphetamine combined: order of administration influences hyperthermic and long-term adverse effects in female rats.
    Clemens KJ; Cornish JL; Li KM; Hunt GE; McGregor IS
    Neuropharmacology; 2005 Aug; 49(2):195-207. PubMed ID: 15993443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurotoxicity of Ecstasy metabolites in rat cortical neurons, and influence of hyperthermia.
    Capela JP; Meisel A; Abreu AR; Branco PS; Ferreira LM; Lobo AM; Remião F; Bastos ML; Carvalho F
    J Pharmacol Exp Ther; 2006 Jan; 316(1):53-61. PubMed ID: 16183702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apoptotic and antiapoptotic mechanisms after traumatic brain injury.
    Keane RW; Kraydieh S; Lotocki G; Alonso OF; Aldana P; Dietrich WD
    J Cereb Blood Flow Metab; 2001 Oct; 21(10):1189-98. PubMed ID: 11598496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurotoxicity mechanisms of thioether ecstasy metabolites.
    Capela JP; Macedo C; Branco PS; Ferreira LM; Lobo AM; Fernandes E; Remião F; Bastos ML; Dirnagl U; Meisel A; Carvalho F
    Neuroscience; 2007 Jun; 146(4):1743-57. PubMed ID: 17467183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.