These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17088465)

  • 1. Spiral wave attachment to millimeter-sized obstacles.
    Lim ZY; Maskara B; Aguel F; Emokpae R; Tung L
    Circulation; 2006 Nov; 114(20):2113-21. PubMed ID: 17088465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric field perturbations of spiral waves attached to millimeter-size obstacles.
    Cysyk J; Tung L
    Biophys J; 2008 Feb; 94(4):1533-41. PubMed ID: 17921205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration of functional reentry by rapid pacing in anisotropic cardiac monolayers: formation of multi-wave functional reentries.
    Bursac N; Tung L
    Cardiovasc Res; 2006 Feb; 69(2):381-90. PubMed ID: 16274682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-related initiation of reentry by rapid pacing in monolayers of cardiac cells.
    Bian W; Tung L
    Circ Res; 2006 Mar; 98(4):e29-38. PubMed ID: 16469953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unpinning of a spiral wave anchored around a circular obstacle by an external wave train: common aspects of a chemical reaction and cardiomyocyte tissue.
    Tanaka M; Isomura A; Hörning M; Kitahata H; Agladze K; Yoshikawa K
    Chaos; 2009 Dec; 19(4):043114. PubMed ID: 20059210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attachment of meandering reentrant wave fronts to anatomic obstacles in the atrium. Role of the obstacle size.
    Ikeda T; Yashima M; Uchida T; Hough D; Fishbein MC; Mandel WJ; Chen PS; Karagueuzian HS
    Circ Res; 1997 Nov; 81(5):753-64. PubMed ID: 9351449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pro- and antiarrhythmic effects of ATP-sensitive potassium current activation on reentry during early afterdepolarization-mediated arrhythmias.
    Chang MG; de Lange E; Calmettes G; Garfinkel A; Qu Z; Weiss JN
    Heart Rhythm; 2013 Apr; 10(4):575-82. PubMed ID: 23246594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Different sensitivities of two mechanisms of excitation waves in heart tissue to anti-arrhythmia agents--blockers of fast sodium currents].
    Grenader AK; Zurabishvili GG
    Biofizika; 1985; 30(1):118-23. PubMed ID: 2579679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenoviral expression of IKs contributes to wavebreak and fibrillatory conduction in neonatal rat ventricular cardiomyocyte monolayers.
    Muñoz V; Grzeda KR; Desplantez T; Pandit SV; Mironov S; Taffet SM; Rohr S; Kléber AG; Jalife J
    Circ Res; 2007 Aug; 101(5):475-83. PubMed ID: 17626898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical imaging of arrhythmias in tissue culture.
    Tung L; Zhang Y
    J Electrocardiol; 2006 Oct; 39(4 Suppl):S2-6. PubMed ID: 17015066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Region [corrected] of slowed conduction acts as core for spiral wave reentry in cardiac cell monolayers.
    Lin JW; Garber L; Qi YR; Chang MG; Cysyk J; Tung L
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H58-65. PubMed ID: 17965287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of reentrant arrhythmias by dominant-negative inhibition of connexin43 in rat cultured myocyte monolayers.
    Nakagami T; Tanaka H; Dai P; Lin SF; Tanabe T; Mani H; Fujiwara K; Matsubara H; Takamatsu T
    Cardiovasc Res; 2008 Jul; 79(1):70-9. PubMed ID: 18378510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical imaging of spiral waves: pharmacological modification of spiral-type excitations in a 2-dimensional layer of ventricular myocardium.
    Kodama I; Honjo H; Yamazaki M; Nakagawa H; Ishiguro Y; Okuno Y; Sakuma I; Kamiya K
    J Electrocardiol; 2005 Oct; 38(4 Suppl):126-30. PubMed ID: 16226087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanoelectrical excitation by fluid jets in monolayers of cultured cardiac myocytes.
    Kong CR; Bursac N; Tung L
    J Appl Physiol (1985); 2005 Jun; 98(6):2328-36; discussion 2320. PubMed ID: 15731396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias.
    Starmer CF; Romashko DN; Reddy RS; Zilberter YI; Starobin J; Grant AO; Krinsky VI
    Circulation; 1995 Aug; 92(3):595-605. PubMed ID: 7634474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiral reentry waves in confluent layer of HL-1 cardiomyocyte cell lines.
    Hong JH; Choi JH; Kim TY; Lee KJ
    Biochem Biophys Res Commun; 2008 Dec; 377(4):1269-73. PubMed ID: 19000656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bepridil facilitates early termination of spiral-wave reentry in two-dimensional cardiac muscle through an increase of intercellular electrical coupling.
    Takanari H; Honjo H; Takemoto Y; Suzuki T; Kato S; Harada M; Okuno Y; Ashihara T; Opthof T; Sakuma I; Kamiya K; Kodama I
    J Pharmacol Sci; 2011; 115(1):15-26. PubMed ID: 21157118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiral waves and reentry dynamics in an in vitro model of the healed infarct border zone.
    Chang MG; Zhang Y; Chang CY; Xu L; Emokpae R; Tung L; Marbán E; Abraham MR
    Circ Res; 2009 Nov; 105(11):1062-71. PubMed ID: 19815825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of spatial dispersion of repolarization in reentry around a functional core versus reentry around a fixed anatomical core.
    Himel HD; Cupelli M; Gantt M; Boutjdir M; El-Sherif N
    Ann Noninvasive Electrocardiol; 2019 Jul; 24(4):e12647. PubMed ID: 30896072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of QT interval prolongation in the creation of spiral wave type reentry.
    Shibata N; Watanabe H; Sakuma I; Kodama I; Niwa R; Fukui Y; Toyama J; Hosoda S
    Heart Vessels; 1997; Suppl 12():228-31. PubMed ID: 9476590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.