BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 17088565)

  • 21. Multiview deconvolution approximation multiphoton microscopy of tissues and zebrafish larvae.
    Kapsokalyvas D; Rosas R; Janssen RWA; Vanoevelen JM; Nabben M; Strauch M; Merhof D; van Zandvoort MAMJ
    Sci Rep; 2021 May; 11(1):10160. PubMed ID: 33980963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic aberration correction for multiharmonic microscopy.
    Olivier N; Débarre D; Beaurepaire E
    Opt Lett; 2009 Oct; 34(20):3145-7. PubMed ID: 19838254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive aberration correction in a confocal microscope.
    Booth MJ; Neil MA; Juskaitis R; Wilson T
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5788-92. PubMed ID: 11959908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive optics wide-field microscopy using direct wavefront sensing.
    Azucena O; Crest J; Kotadia S; Sullivan W; Tao X; Reinig M; Gavel D; Olivier S; Kubby J
    Opt Lett; 2011 Mar; 36(6):825-7. PubMed ID: 21403697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An adaptive approach for uniform scanning in multifocal multiphoton microscopy with a spatial light modulator.
    Matsumoto N; Okazaki S; Fukushi Y; Takamoto H; Inoue T; Terakawa S
    Opt Express; 2014 Jan; 22(1):633-45. PubMed ID: 24515023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy.
    Wang C; Ji N
    Opt Lett; 2012 Jun; 37(11):2001-3. PubMed ID: 22660101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a doubly weighted Gerchberg-Saxton algorithm for use in multibeam imaging applications.
    Poland SP; Krstajić N; Knight RD; Henderson RK; Ameer-Beg SM
    Opt Lett; 2014 Apr; 39(8):2431-4. PubMed ID: 24979011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy.
    Chang CY; Cheng LC; Su HW; Hu YY; Cho KC; Yen WC; Xu C; Dong CY; Chen SJ
    Biomed Opt Express; 2014 Jun; 5(6):1768-77. PubMed ID: 24940539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correction of spherical aberration in multi-focal multiphoton microscopy with spatial light modulator.
    Matsumoto N; Konno A; Ohbayashi Y; Inoue T; Matsumoto A; Uchimura K; Kadomatsu K; Okazaki S
    Opt Express; 2017 Mar; 25(6):7055-7068. PubMed ID: 28381046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-Photon Adaptive Optics for Mouse Brain Imaging.
    Sinefeld D; Xia F; Wang M; Wang T; Wu C; Yang X; Paudel HP; Ouzounov DG; Bifano TG; Xu C
    Front Neurosci; 2022; 16():880859. PubMed ID: 35692424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics.
    Bortoletto F; Bonoli C; Panizzolo P; Ciubotaru CD; Mammano F
    PLoS One; 2011; 6(7):e22321. PubMed ID: 21814575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wavefront-sensorless adaptive optics with a laser-free spinning disk confocal microscope.
    Hussain SA; Kubo T; Hall N; Gala D; Hampson K; Parton R; Phillips MA; Wincott M; Fujita K; Davis I; Dobbie I; Booth MJ
    J Microsc; 2022 Nov; 288(2):106-116. PubMed ID: 33128278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy.
    Wright AJ; Burns D; Patterson BA; Poland SP; Valentine GJ; Girkin JM
    Microsc Res Tech; 2005 May; 67(1):36-44. PubMed ID: 16025475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Incoherent structured illumination improves optical sectioning and contrast in multiphoton super-resolution microscopy.
    Winter PW; Chandris P; Fischer RS; Wu Y; Waterman CM; Shroff H
    Opt Express; 2015 Feb; 23(4):5327-34. PubMed ID: 25836564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid multiphoton and optoacoustic microscope.
    Tserevelakis GJ; Soliman D; Omar M; Ntziachristos V
    Opt Lett; 2014 Apr; 39(7):1819-22. PubMed ID: 24686613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-photon imaging of neural population activity in zebrafish.
    Renninger SL; Orger MB
    Methods; 2013 Aug; 62(3):255-67. PubMed ID: 23727462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving Focal Photostimulation of Cortical Neurons with Pre-derived Wavefront Correction.
    Choy JMC; Sané SS; Lee WM; Stricker C; Bachor HA; Daria VR
    Front Cell Neurosci; 2017; 11():105. PubMed ID: 28507508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography.
    Bonora S; Zawadzki RJ
    Opt Lett; 2013 Nov; 38(22):4801-4. PubMed ID: 24322136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calculated two-photon fluorescence correction factors for reflective scan engines.
    Sharafutdinova G; Holdsworth J; van Helden D
    Appl Opt; 2010 Mar; 49(8):1472-9. PubMed ID: 20220904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.