These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 17088565)

  • 41. Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy.
    Aviles-Espinosa R; Andilla J; Porcar-Guezenec R; Olarte OE; Nieto M; Levecq X; Artigas D; Loza-Alvarez P
    Biomed Opt Express; 2011 Nov; 2(11):3135-49. PubMed ID: 22076274
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Image-based calibration of a deformable mirror in wide-field microscopy.
    Turaga D; Holy TE
    Appl Opt; 2010 Apr; 49(11):2030-40. PubMed ID: 20390001
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aberration measurement and correction on a large field of view in fluorescence microscopy.
    Furieri T; Ancora D; Calisesi G; Morara S; Bassi A; Bonora S
    Biomed Opt Express; 2022 Jan; 13(1):262-273. PubMed ID: 35154869
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultra-large field-of-view two-photon microscopy.
    Tsai PS; Mateo C; Field JJ; Schaffer CB; Anderson ME; Kleinfeld D
    Opt Express; 2015 Jun; 23(11):13833-47. PubMed ID: 26072755
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Performance evaluation of a sensorless adaptive optics multiphoton microscope.
    Skorsetz M; Artal P; Bueno JM
    J Microsc; 2016 Mar; 261(3):249-58. PubMed ID: 26469361
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptive optical two-photon microscopy using autofluorescent guide stars.
    Tao X; Norton A; Kissel M; Azucena O; Kubby J
    Opt Lett; 2013 Dec; 38(23):5075-8. PubMed ID: 24281513
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adaptive Optics Microscopy with Wavefront Sensing Based on Neighbor Correlation.
    Miura N; Ashida Y; Matsuda Y; Shibuya T; Tamada Y; Hatsumi S; Yamamoto H; Kajikawa I; Kamei Y; Hattori M
    Plant Cell Physiol; 2023 Dec; 64(11):1372-1382. PubMed ID: 37930869
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adaptive aberration correction in a two-photon microscope.
    Neil MA; Juskaitis R; Booth MJ; Wilson T; Tanaka T; Kawata S
    J Microsc; 2000 Nov; 200 (Pt 2)():105-8. PubMed ID: 11106950
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sequential multitrack nonlinear ex vivo imaging of esophageal stroma based on backscattered second-harmonic generation and two-photon autofluorescence.
    Zhuo S; Chen J; Jiang X; Luo T; Chen R; Xie S; Zou Q
    Scanning; 2007; 29(5):219-24. PubMed ID: 17828710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two-photon fluorescence excitation and related techniques in biological microscopy.
    Diaspro A; Chirico G; Collini M
    Q Rev Biophys; 2005 May; 38(2):97-166. PubMed ID: 16478566
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of the confocal wavefront sensor and its application to biological microscopy.
    Shaw M; O'Holleran K; Paterson C
    Opt Express; 2013 Aug; 21(16):19353-62. PubMed ID: 23938851
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy.
    Albert O; Sherman L; Mourou G; Norris TB; Vdovin G
    Opt Lett; 2000 Jan; 25(1):52-4. PubMed ID: 18059779
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy.
    Shaw M; Hall S; Knox S; Stevens R; Paterson C
    Opt Express; 2010 Mar; 18(7):6900-13. PubMed ID: 20389710
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aberration Correction to Optimize the Performance of Two-Photon Fluorescence Microscopy Using the Genetic Algorithm.
    Yan W; Huang Y; Wang L; Guo Y; Li J; Zhu Y; Yang Z; Qu J
    Microsc Microanal; 2022 Jan; ():1-7. PubMed ID: 35074025
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Towards model-based adaptive optics optical coherence tomography.
    Verstraete HR; Cense B; Bilderbeek R; Verhaegen M; Kalkman J
    Opt Express; 2014 Dec; 22(26):32406-18. PubMed ID: 25607203
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lossy wavefront sensing and correction of distorted laser beams.
    Wu C; Ko J; Davis CC
    Appl Opt; 2020 Jan; 59(3):817-824. PubMed ID: 32225223
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automated fast computational adaptive optics for optical coherence tomography based on a stochastic parallel gradient descent algorithm.
    Zhu D; Wang R; Žurauskas M; Pande P; Bi J; Yuan Q; Wang L; Gao Z; Boppart SA
    Opt Express; 2020 Aug; 28(16):23306-23319. PubMed ID: 32752329
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Advantages of ultrashort phase-shaped pulses for selective two-photon activation and biomedical imaging.
    Schelhas LT; Shane JC; Dantus M
    Nanomedicine; 2006 Sep; 2(3):177-81. PubMed ID: 17292140
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancement of imaging depth of two-photon microscopy using pinholes: analytical simulation and experiments.
    Song W; Lee J; Kwon HS
    Opt Express; 2012 Aug; 20(18):20605-22. PubMed ID: 23037108
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptive Optics in an Oblique Plane Microscope.
    McFadden C; Marin Z; Chen B; Daetwyler S; Wang X; Rajendran D; Dean KM; Fiolka R
    bioRxiv; 2024 Mar; ():. PubMed ID: 38562744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.