BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 17089376)

  • 1. Assessing the influence of scanner background noise on auditory processing. II. An fMRI study comparing auditory processing in the absence and presence of recorded scanner noise using a sparse design.
    Gaab N; Gabrieli JD; Glover GH
    Hum Brain Mapp; 2007 Aug; 28(8):721-32. PubMed ID: 17089376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the influence of scanner background noise on auditory processing. I. An fMRI study comparing three experimental designs with varying degrees of scanner noise.
    Gaab N; Gabrieli JD; Glover GH
    Hum Brain Mapp; 2007 Aug; 28(8):703-20. PubMed ID: 17080440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting in peace or noise: scanner background noise suppresses default-mode network.
    Gaab N; Gabrieli JD; Glover GH
    Hum Brain Mapp; 2008 Jul; 29(7):858-67. PubMed ID: 18454447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silent and continuous fMRI scanning differentially modulate activation in an auditory language comprehension task.
    Schmidt CF; Zaehle T; Meyer M; Geiser E; Boesiger P; Jancke L
    Hum Brain Mapp; 2008 Jan; 29(1):46-56. PubMed ID: 17318832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study.
    Zaehle T; Wüstenberg T; Meyer M; Jäncke L
    Eur J Neurosci; 2004 Nov; 20(9):2447-56. PubMed ID: 15525285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation.
    Yakunina N; Kang EK; Kim TS; Min JH; Kim SS; Nam EC
    Neuroradiology; 2015 Oct; 57(10):1063-73. PubMed ID: 26193957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing the interval between volume acquisitions improves "sparse" scanning protocols in event-related auditory fMRI.
    Liem F; Lutz K; Luechinger R; Jäncke L; Meyer M
    Brain Topogr; 2012 Apr; 25(2):182-93. PubMed ID: 22015572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal characteristics of audiovisual information processing.
    Fuhrmann Alpert G; Hein G; Tsai N; Naumer MJ; Knight RT
    J Neurosci; 2008 May; 28(20):5344-9. PubMed ID: 18480290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory intensity processing: Effect of MRI background noise.
    Angenstein N; Stadler J; Brechmann A
    Hear Res; 2016 Mar; 333():87-92. PubMed ID: 26778471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing the effects of background noise during auditory functional magnetic resonance imaging of speech processing: qualitative and quantitative comparisons between two image acquisition schemes and noise cancellation.
    Blackman GA; Hall DA
    J Speech Lang Hear Res; 2011 Apr; 54(2):693-704. PubMed ID: 20844253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mismatch responses to randomized gradient switching noise as reflected by fMRI and whole-head magnetoencephalography.
    Mathiak K; Rapp A; Kircher TT; Grodd W; Hertrich I; Weiskopf N; Lutzenberger W; Ackermann H
    Hum Brain Mapp; 2002 Jul; 16(3):190-5. PubMed ID: 12112773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of acoustic masking noise in fMRI of the auditory cortex during phonetic discrimination.
    Shah NJ; Jäncke L; Grosse-Ruyken ML; Müller-Gärtner HW
    J Magn Reson Imaging; 1999 Jan; 9(1):19-25. PubMed ID: 10030646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinearity of FMRI responses in human auditory cortex.
    Talavage TM; Edmister WB
    Hum Brain Mapp; 2004 Jul; 22(3):216-28. PubMed ID: 15195288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling hemodynamic responses in auditory cortex at 1.5 T using variable duration imaging acoustic noise.
    Hu S; Olulade O; Castillo JG; Santos J; Kim S; Tamer GG; Luh WM; Talavage TM
    Neuroimage; 2010 Feb; 49(4):3027-38. PubMed ID: 19948232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional fields in human auditory cortex revealed by time-resolved fMRI without interference of EPI noise.
    Di Salle F; Formisano E; Seifritz E; Linden DE; Scheffler K; Saulino C; Tedeschi G; Zanella FE; Pepino A; Goebel R; Marciano E
    Neuroimage; 2001 Feb; 13(2):328-38. PubMed ID: 11162273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating brain response to music: a comparison of different fMRI acquisition schemes.
    Mueller K; Mildner T; Fritz T; Lepsien J; Schwarzbauer C; Schroeter ML; Möller HE
    Neuroimage; 2011 Jan; 54(1):337-43. PubMed ID: 20728550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence.
    Seifritz E; Di Salle F; Esposito F; Herdener M; Neuhoff JG; Scheffler K
    Neuroimage; 2006 Feb; 29(3):1013-22. PubMed ID: 16253522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of MR scanner noise on auditory cortex activity using fMRI.
    Scarff CJ; Dort JC; Eggermont JJ; Goodyear BG
    Hum Brain Mapp; 2004 Aug; 22(4):341-9. PubMed ID: 15202112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation and task effects in auditory processing measured using fMRI.
    Hall DA; Haggard MP; Akeroyd MA; Summerfield AQ; Palmer AR; Elliott MR; Bowtell RW
    Hum Brain Mapp; 2000 Jul; 10(3):107-19. PubMed ID: 10912590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.