BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 17089376)

  • 21. Keeping track of sound objects in space: The contribution of early-stage auditory areas.
    Da Costa S; Clarke S; Crottaz-Herbette S
    Hear Res; 2018 Sep; 366():17-31. PubMed ID: 29643021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of "silent" clustered and sparse temporal fMRI acquisitions in tonal and speech perception tasks.
    Zaehle T; Schmidt CF; Meyer M; Baumann S; Baltes C; Boesiger P; Jancke L
    Neuroimage; 2007 Oct; 37(4):1195-204. PubMed ID: 17644001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scanning silence: mental imagery of complex sounds.
    Bunzeck N; Wuestenberg T; Lutz K; Heinze HJ; Jancke L
    Neuroimage; 2005 Jul; 26(4):1119-27. PubMed ID: 15893474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Audiovisual functional magnetic resonance imaging adaptation reveals multisensory integration effects in object-related sensory cortices.
    Doehrmann O; Weigelt S; Altmann CF; Kaiser J; Naumer MJ
    J Neurosci; 2010 Mar; 30(9):3370-9. PubMed ID: 20203196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study.
    Brechmann A; Baumgart F; Scheich H
    J Neurophysiol; 2002 Jan; 87(1):423-33. PubMed ID: 11784760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Auditory lexical decision, categorical perception, and FM direction discrimination differentially engage left and right auditory cortex.
    Poeppel D; Guillemin A; Thompson J; Fritz J; Bavelier D; Braun AR
    Neuropsychologia; 2004; 42(2):183-200. PubMed ID: 14644105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuroimaging paradigms for tonotopic mapping (II): the influence of acquisition protocol.
    Langers DR; Sanchez-Panchuelo RM; Francis ST; Krumbholz K; Hall DA
    Neuroimage; 2014 Oct; 100():663-75. PubMed ID: 25067814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The processing of temporal pitch and melody information in auditory cortex.
    Patterson RD; Uppenkamp S; Johnsrude IS; Griffiths TD
    Neuron; 2002 Nov; 36(4):767-76. PubMed ID: 12441063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional neuroanatomy of auditory mismatch processing: an event-related fMRI study of duration-deviant oddballs.
    Schall U; Johnston P; Todd J; Ward PB; Michie PT
    Neuroimage; 2003 Oct; 20(2):729-36. PubMed ID: 14568447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of fMRI acoustic noise on non-auditory working memory task: comparison between continuous and pulsed sound emitting EPI.
    Haller S; Bartsch AJ; Radue EW; Klarhöfer M; Seifritz E; Scheffler K
    MAGMA; 2005 Nov; 18(5):263-71. PubMed ID: 16320092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. "Sparse" temporal sampling in auditory fMRI.
    Hall DA; Haggard MP; Akeroyd MA; Palmer AR; Summerfield AQ; Elliott MR; Gurney EM; Bowtell RW
    Hum Brain Mapp; 1999; 7(3):213-23. PubMed ID: 10194620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A silent event-related functional MRI technique for brain activation studies without interference of scanner acoustic noise.
    Yang Y; Engelien A; Engelien W; Xu S; Stern E; Silbersweig DA
    Magn Reson Med; 2000 Feb; 43(2):185-90. PubMed ID: 10680681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Encoding of spectral correlation over time in auditory cortex.
    Overath T; Kumar S; von Kriegstein K; Griffiths TD
    J Neurosci; 2008 Dec; 28(49):13268-73. PubMed ID: 19052218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frequency specific impairment of automatic pitch change detection by fMRI acoustic noise: an MEG study.
    Novitski N; Maess B; Tervaniemi M
    J Neurosci Methods; 2006 Jul; 155(1):149-59. PubMed ID: 16530843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping cortico-subcortical sensitivity to 4 Hz amplitude modulation depth in human auditory system with functional MRI.
    Fuglsang SA; Madsen KH; Puonti O; Hjortkjær J; Siebner HR
    Neuroimage; 2022 Feb; 246():118745. PubMed ID: 34808364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hearing syllables by seeing visual stimuli.
    Jäncke L; Shah NJ
    Eur J Neurosci; 2004 May; 19(9):2603-8. PubMed ID: 15128414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural mechanisms of auditory discrimination of long-duration tonal patterns: a neural modeling and fMRI study.
    Ulloa A; Husain FT; Kemeny S; Xu J; Braun AR; Horwitz B
    J Integr Neurosci; 2008 Dec; 7(4):501-27. PubMed ID: 19132798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accelerated Clustered Sparse Acquisition to Improve Functional MRI for Mapping Language Functions.
    Keil P; Nettekoven C; Weiss K; Lichtenstein T; Goldbrunner R; Giese D; Weiss Lucas C
    J Neurol Surg A Cent Eur Neurosurg; 2020 Mar; 81(2):95-104. PubMed ID: 31659723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Is it tonotopy after all?
    Schönwiesner M; von Cramon DY; Rübsamen R
    Neuroimage; 2002 Nov; 17(3):1144-61. PubMed ID: 12414256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of auditory cortex activation by using silent FMRI.
    Yetkin FZ; Roland PS; Purdy PD; Christensen WF
    Am J Otolaryngol; 2003; 24(5):281-9. PubMed ID: 13130439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.