These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 17089376)

  • 61. Perception modulates auditory cortex activation.
    Pollmann S; Maertens M
    Neuroreport; 2006 Nov; 17(17):1779-82. PubMed ID: 17164663
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Assessment of temporal state-dependent interactions between auditory fMRI responses to desired and undesired acoustic sources.
    Olulade O; Hu S; Gonzalez-Castillo J; Tamer GG; Luh WM; Ulmer JL; Talavage TM
    Hear Res; 2011 Jul; 277(1-2):67-77. PubMed ID: 21426929
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Interleaved silent steady state (ISSS) imaging: a new sparse imaging method applied to auditory fMRI.
    Schwarzbauer C; Davis MH; Rodd JM; Johnsrude I
    Neuroimage; 2006 Feb; 29(3):774-82. PubMed ID: 16226896
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Active stream segregation specifically involves the left human auditory cortex.
    Deike S; Scheich H; Brechmann A
    Hear Res; 2010 Jun; 265(1-2):30-7. PubMed ID: 20233603
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evaluating an acoustically quiet EPI sequence for use in fMRI studies of speech and auditory processing.
    Peelle JE; Eason RJ; Schmitter S; Schwarzbauer C; Davis MH
    Neuroimage; 2010 Oct; 52(4):1410-9. PubMed ID: 20483377
    [TBL] [Abstract][Full Text] [Related]  

  • 66. MEMRI for visualizing brain activity after auditory stimulation in frogs.
    Ringler E; Coates M; Cobo-Cuan A; Harris NG; Narins PM
    Behav Neurosci; 2019 Jun; 133(3):329-340. PubMed ID: 31045394
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Parametric merging of MEG and fMRI reveals spatiotemporal differences in cortical processing of spoken words and environmental sounds in background noise.
    Renvall H; Formisano E; Parviainen T; Bonte M; Vihla M; Salmelin R
    Cereb Cortex; 2012 Jan; 22(1):132-43. PubMed ID: 21613467
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study.
    Brunetti M; Belardinelli P; Caulo M; Del Gratta C; Della Penna S; Ferretti A; Lucci G; Moretti A; Pizzella V; Tartaro A; Torquati K; Olivetti Belardinelli M; Romani GL
    Hum Brain Mapp; 2005 Dec; 26(4):251-61. PubMed ID: 15954141
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Silent echo-planar imaging for auditory FMRI.
    Schmitter S; Diesch E; Amann M; Kroll A; Moayer M; Schad LR
    MAGMA; 2008 Sep; 21(5):317-25. PubMed ID: 18716815
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Auditory stimulus repetition effects on cortical hemoglobin oxygenation: a near-infrared spectroscopy investigation.
    Weiss AP; Duff M; Roffman JL; Rauch SL; Strangman GE
    Neuroreport; 2008 Jan; 19(2):161-5. PubMed ID: 18185101
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.
    Ranaweera RD; Kwon M; Hu S; Tamer GG; Luh WM; Talavage TM
    Hear Res; 2016 Jan; 331():57-68. PubMed ID: 26519093
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functional magnetic resonance imaging of human auditory cortex.
    Binder JR; Rao SM; Hammeke TA; Yetkin FZ; Jesmanowicz A; Bandettini PA; Wong EC; Estkowski LD; Goldstein MD; Haughton VM
    Ann Neurol; 1994 Jun; 35(6):662-72. PubMed ID: 8210222
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Background MR gradient noise and non-auditory BOLD activations: a data-driven perspective.
    Haller S; Homola GA; Scheffler K; Beckmann CF; Bartsch AJ
    Brain Res; 2009 Jul; 1282():74-83. PubMed ID: 19505438
    [TBL] [Abstract][Full Text] [Related]  

  • 74. FMRI activations of amygdala, cingulate cortex, and auditory cortex by infant laughing and crying.
    Sander K; Frome Y; Scheich H
    Hum Brain Mapp; 2007 Oct; 28(10):1007-22. PubMed ID: 17358020
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Division of labor between left and right human auditory cortices during the processing of intensity and duration.
    Angenstein N; Brechmann A
    Neuroimage; 2013 Dec; 83():1-11. PubMed ID: 23831528
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comparison of continuous sampling with active noise cancelation and sparse sampling for cortical and subcortical auditory functional MRI.
    Dewey RS; Hall DA; Plack CJ; Francis ST
    Magn Reson Med; 2021 Nov; 86(5):2577-2588. PubMed ID: 34196020
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Using neuroimaging to understand the cortical mechanisms of auditory selective attention.
    Lee AK; Larson E; Maddox RK; Shinn-Cunningham BG
    Hear Res; 2014 Jan; 307():111-20. PubMed ID: 23850664
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Functional asymmetry in primary auditory cortex for processing musical sounds: temporal pattern analysis of fMRI time series.
    Izumi S; Itoh K; Matsuzawa H; Takahashi S; Kwee IL; Nakada T
    Neuroreport; 2011 Jul; 22(10):470-3. PubMed ID: 21642880
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex.
    Schönwiesner M; Rübsamen R; von Cramon DY
    Eur J Neurosci; 2005 Sep; 22(6):1521-8. PubMed ID: 16190905
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Temporal resolving power of spin echo and gradient echo fMRI at 3T with apparent diffusion coefficient compartmentalization.
    Hulvershorn J; Bloy L; Gualtieri EE; Redmann CP; Leigh JS; Elliott MA
    Hum Brain Mapp; 2005 Jun; 25(2):247-58. PubMed ID: 15849715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.