BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 17089654)

  • 1. Individually variable energy management strategies in relation to energetic costs of egg production.
    Vézina F; Speakman JR; Williams TD
    Ecology; 2006 Oct; 87(10):2447-58. PubMed ID: 17089654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individually variable energy management during egg production is repeatable across breeding attempts.
    Williams TD; Vézina F; Speakman JR
    J Exp Biol; 2009 Apr; 212(Pt 8):1101-5. PubMed ID: 19329743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of intake rate on energy expenditure, somatic repair and reproduction of zebra finches.
    Wiersma P; Verhulst S
    J Exp Biol; 2005 Nov; 208(Pt 21):4091-8. PubMed ID: 16244168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food intake, locomotor activity, and egg laying in zebra finches: contributions to reproductive energy demand?
    Williams TD; Ternan SP
    Physiol Biochem Zool; 1999; 72(1):19-27. PubMed ID: 9882599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for within-individual energy reallocation in cold-challenged, egg-producing birds.
    Salvante KG; Vézina F; Williams TD
    J Exp Biol; 2010 Jun; 213(Pt 12):1991-2000. PubMed ID: 20511512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The metabolic cost of egg production is repeatable.
    Vézina F; Williams TD
    J Exp Biol; 2005 Jul; 208(Pt 13):2533-8. PubMed ID: 15961739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Female zebra finches (Taeniopygia guttata) are chronically but not cumulatively "anemic" during repeated egg laying in response to experimental nest predation.
    Willie J; Travers M; Williams TD
    Physiol Biochem Zool; 2010; 83(1):119-26. PubMed ID: 19911962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex-specific energy management strategies in response to training for increased foraging effort prior to reproduction in captive zebra finches.
    Yap KN; Powers DR; Vermette ML; Tsai OH; Williams TD
    J Exp Biol; 2021 Apr; 224(8):. PubMed ID: 33914039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associations between Resting, Activity, and Daily Metabolic Rate in Free-Living Endotherms: No Universal Rule in Birds and Mammals.
    Portugal SJ; Green JA; Halsey LG; Arnold W; Careau V; Dann P; Frappell PB; Grémillet D; Handrich Y; Martin GR; Ruf T; Guillemette MM; Butler PJ
    Physiol Biochem Zool; 2016; 89(3):251-61. PubMed ID: 27153134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is there an energetic-based trade-off between thermoregulation and the acute phase response in zebra finches?
    Burness G; Armstrong C; Fee T; Tilman-Schindel E
    J Exp Biol; 2010 Apr; 213(Pt 8):1386-94. PubMed ID: 20348351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diurnal and Reproductive Stage-Dependent Variation of Parental Behaviour in Captive Zebra Finches.
    Morvai B; Nanuru S; Mul D; Kusche N; Milne G; Székely T; Komdeur J; Miklósi Á; Pogány Á
    PLoS One; 2016; 11(12):e0167368. PubMed ID: 27973549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Running behavior and its energy cost in mice selectively bred for high voluntary locomotor activity.
    Rezende EL; Gomes FR; Chappell MA; Garland T
    Physiol Biochem Zool; 2009; 82(6):662-79. PubMed ID: 19799520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What comes first, the zebra finch or the egg: temperature-dependent reproductive, physiological and behavioural plasticity in egg-laying zebra finches.
    Salvante KG; Walzem RL; Williams TD
    J Exp Biol; 2007 Apr; 210(Pt 8):1325-34. PubMed ID: 17401116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of parasitism in the energy management of a free-ranging bird.
    Hicks O; Burthe SJ; Daunt F; Newell M; Chastel O; Parenteau C; Green JA
    J Exp Biol; 2018 Dec; 221(Pt 24):. PubMed ID: 30397174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Female Zebra Finches Smell Their Eggs.
    Golüke S; Dörrenberg S; Krause ET; Caspers BA
    PLoS One; 2016; 11(5):e0155513. PubMed ID: 27192061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Context-dependent correlation between resting metabolic rate and daily energy expenditure in wild chipmunks.
    Careau V; Réale D; Garant D; Pelletier F; Speakman JR; Humphries MM
    J Exp Biol; 2013 Feb; 216(Pt 3):418-26. PubMed ID: 23077163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parental and first generation effects of exogenous 17beta-estradiol on reproductive performance of female zebra finches (Taeniopygia guttata).
    Williams TD
    Horm Behav; 1999 Apr; 35(2):135-43. PubMed ID: 10202121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic costs of egg production in the European starling (Sturnus vulgaris).
    Vézina F; Williams TD
    Physiol Biochem Zool; 2002; 75(4):377-85. PubMed ID: 12324894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Annual cycle of energy and time expenditure in a golden-mantled ground squirrel population.
    Kenagy GJ; Sharbaugh SM; Nagy KA
    Oecologia; 1989 Feb; 78(2):269-282. PubMed ID: 28312369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy expenditure during egg laying is equal for early and late breeding free-living female great tits.
    te Marvelde L; Webber SL; Meijer HA; Visser ME
    Oecologia; 2012 Mar; 168(3):631-8. PubMed ID: 21935666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.