These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 17089685)

  • 1. Bacterial adhesion to surfaces: the influence of surface roughness.
    Riedewald F
    PDA J Pharm Sci Technol; 2006; 60(3):164-71. PubMed ID: 17089685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Titanium-coating of stainless steel as an aid to improved cleanability.
    Verran J; Packer A; Kelly P; Whitehead KA
    Int J Food Microbiol; 2010 Jul; 141 Suppl 1():S134-9. PubMed ID: 20542585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Food-Safe Modification of Stainless Steel Food-Processing Surfaces to Reduce Bacterial Biofilms.
    Awad TS; Asker D; Hatton BD
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):22902-22912. PubMed ID: 29888590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of fine polished stainless steel, TiN and TiN/Ag surfaces: adhesion and attachment strength of Listeria monocytogenes as well as anti-listerial effect.
    Skovager A; Whitehead K; Wickens D; Verran J; Ingmer H; Arneborg N
    Colloids Surf B Biointerfaces; 2013 Sep; 109():190-6. PubMed ID: 23643915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation of the effect of scaling-induced surface roughness on bacterial adhesion in common fixed dental restorative materials.
    Checketts MR; Turkyilmaz I; Asar NV
    J Prosthet Dent; 2014 Nov; 112(5):1265-70. PubMed ID: 24831748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomolecules in multilayer film for antimicrobial and easy-cleaning stainless steel surface applications.
    Vreuls C; Zocchi G; Garitte G; Archambeau C; Martial J; Van de Weerdt C
    Biofouling; 2010 Aug; 26(6):645-56. PubMed ID: 20645194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removing biofilms from stainless steel without changing surface properties relevant for bacterial attachment.
    Huttenlochner K; Müller-Renno C; Ziegler C; Merz R; Merz B; Kopnarski M; Chodorski J; Schlegel C; Ulber R
    Biointerphases; 2017 Apr; 12(2):02C404. PubMed ID: 28446023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The detection and influence of food soils on microorganisms on stainless steel using scanning electron microscopy and epifluorescence microscopy.
    Whitehead KA; Smith LA; Verran J
    Int J Food Microbiol; 2010 Jul; 141 Suppl 1():S125-33. PubMed ID: 20153071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.
    Bagherifard S; Hickey DJ; de Luca AC; Malheiro VN; Markaki AE; Guagliano M; Webster TJ
    Biomaterials; 2015 Dec; 73():185-97. PubMed ID: 26410786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study.
    Arnold JW; Bailey GW
    Poult Sci; 2000 Dec; 79(12):1839-45. PubMed ID: 11194050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine.
    Schlisselberg DB; Yaron S
    Food Microbiol; 2013 Aug; 35(1):65-72. PubMed ID: 23628616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial colloid deposition on bare and zeolite-coated stainless steel and aluminum: influence of surface roughness.
    Chen G; Bedi RS; Yan YS; Walker SL
    Langmuir; 2010 Aug; 26(15):12605-13. PubMed ID: 20590135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleanability in relation to bacterial retention on unused and abraded domestic sink materials.
    Holah JT; Thorpe RH
    J Appl Bacteriol; 1990 Oct; 69(4):599-608. PubMed ID: 2292524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attachment of Shiga toxigenic Escherichia coli to stainless steel.
    Rivas L; Fegan N; Dykes GA
    Int J Food Microbiol; 2007 Apr; 115(1):89-94. PubMed ID: 17207875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Studies on the recovery of pharmaceutical drug substances from surfaces made of defined stainless-steel alloys].
    Kloss S; Müller U; Oelschläger H
    Pharmazie; 2005 Sep; 60(9):661-4. PubMed ID: 16222864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature and growth media on the attachment of Listeria monocytogenes to stainless steel.
    Mai TL; Conner DE
    Int J Food Microbiol; 2007 Dec; 120(3):282-6. PubMed ID: 17959265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of bacterial adhesion on ion-implanted stainless steel surfaces.
    Zhao Q; Liu Y; Wang C; Wang S; Peng N; Jeynes C
    Med Eng Phys; 2008 Apr; 30(3):341-9. PubMed ID: 17544806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface nanocrystallization for bacterial control.
    Yu B; Lesiuk A; Davis E; Irvin RT; Li DY
    Langmuir; 2010 Jul; 26(13):10930-4. PubMed ID: 20433185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of growth conditions on adhesion of yeast Candida spp. and Pichia spp. to stainless steel surfaces.
    Tomičić R; Raspor P
    Food Microbiol; 2017 Aug; 65():179-184. PubMed ID: 28400000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial bacterial deposition on bare and zeolite-coated aluminum alloy and stainless steel.
    Chen G; Beving DE; Bedi RS; Yan YS; Walker SL
    Langmuir; 2009 Feb; 25(3):1620-6. PubMed ID: 19123799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.