BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17089787)

  • 1. Interface tissue engineering and the formulation of multiple-tissue systems.
    Lu HH; Jiang J
    Adv Biochem Eng Biotechnol; 2006; 102():91-111. PubMed ID: 17089787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration.
    Spalazzi JP; Dagher E; Doty SB; Guo XE; Rodeo SA; Lu HH
    J Biomed Mater Res A; 2008 Jul; 86(1):1-12. PubMed ID: 18442111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-culture in cartilage tissue engineering.
    Hendriks J; Riesle J; van Blitterswijk CA
    J Tissue Eng Regen Med; 2007; 1(3):170-8. PubMed ID: 18038408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Techniques for biological characterization of tissue-engineered tendon and ligament.
    Doroski DM; Brink KS; Temenoff JS
    Biomaterials; 2007 Jan; 28(2):187-202. PubMed ID: 16982091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering.
    Spalazzi JP; Doty SB; Moffat KL; Levine WN; Lu HH
    Tissue Eng; 2006 Dec; 12(12):3497-508. PubMed ID: 17518686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered bone grafts and bone flaps for maxillofacial defects: state of the art.
    Torroni A
    J Oral Maxillofac Surg; 2009 May; 67(5):1121-7. PubMed ID: 19375027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascularization in tissue engineering.
    Rouwkema J; Rivron NC; van Blitterswijk CA
    Trends Biotechnol; 2008 Aug; 26(8):434-41. PubMed ID: 18585808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomaterials and scaffolds for ligament tissue engineering.
    Ge Z; Yang F; Goh JC; Ramakrishna S; Lee EH
    J Biomed Mater Res A; 2006 Jun; 77(3):639-52. PubMed ID: 16550538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges.
    Santos MI; Reis RL
    Macromol Biosci; 2010 Jan; 10(1):12-27. PubMed ID: 19688722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue engineering of the anterior cruciate ligament: a new method using acellularized tendon allografts and autologous fibroblasts.
    Tischer T; Vogt S; Aryee S; Steinhauser E; Adamczyk C; Milz S; Martinek V; Imhoff AB
    Arch Orthop Trauma Surg; 2007 Nov; 127(9):735-41. PubMed ID: 17541614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of bioreactors in maxillofacial tissue engineering.
    Depprich R; Handschel J; Wiesmann HP; Jäsche-Meyer J; Meyer U
    Br J Oral Maxillofac Surg; 2008 Jul; 46(5):349-54. PubMed ID: 18343545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue engineering solutions for cleft palates.
    Moreau JL; Caccamese JF; Coletti DP; Sauk JJ; Fisher JP
    J Oral Maxillofac Surg; 2007 Dec; 65(12):2503-11. PubMed ID: 18022477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradient biomaterials for soft-to-hard interface tissue engineering.
    Seidi A; Ramalingam M; Elloumi-Hannachi I; Ostrovidov S; Khademhosseini A
    Acta Biomater; 2011 Apr; 7(4):1441-51. PubMed ID: 21232635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of osteoblast-fibroblast interactions in the formation of the ligament-to-bone interface.
    Wang IE; Shan J; Choi R; Oh S; Kepler CK; Chen FH; Lu HH
    J Orthop Res; 2007 Dec; 25(12):1609-20. PubMed ID: 17676622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue engineering of osteochondral constructs in vitro using bioreactors.
    Haasper C; Zeichen J; Meister R; Krettek C; Jagodzinski M
    Injury; 2008 Apr; 39 Suppl 1():S66-76. PubMed ID: 18313474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell culture models of higher complexity in tissue engineering and regenerative medicine.
    James Kirkpatrick C; Fuchs S; Iris Hermanns M; Peters K; Unger RE
    Biomaterials; 2007 Dec; 28(34):5193-8. PubMed ID: 17761278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering.
    Sahoo S; Cho-Hong JG; Siew-Lok T
    Biomed Mater; 2007 Sep; 2(3):169-73. PubMed ID: 18458468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds.
    Battiston KG; Cheung JW; Jain D; Santerre JP
    Biomaterials; 2014 May; 35(15):4465-76. PubMed ID: 24602569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decision support for tendon tissue engineering.
    Ge H; Xu J; Zhou X
    J Med Eng Technol; 2006; 30(2):69-72. PubMed ID: 16531344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold.
    Fan H; Liu H; Toh SL; Goh JC
    Biomaterials; 2008 Mar; 29(8):1017-27. PubMed ID: 18023476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.