BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17089790)

  • 21. Biodegradable galactitol based crosslinked polyesters for controlled release and bone tissue engineering.
    Natarajan J; Movva S; Madras G; Chatterjee K
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():534-547. PubMed ID: 28532063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).
    Kempen DH; Lu L; Kim C; Zhu X; Dhert WJ; Currier BL; Yaszemski MJ
    J Biomed Mater Res A; 2006 Apr; 77(1):103-11. PubMed ID: 16392139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro.
    Kim SS; Park MS; Gwak SJ; Choi CY; Kim BS
    Tissue Eng; 2006 Oct; 12(10):2997-3006. PubMed ID: 17506618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new method for the production of gelatin microparticles for controlled protein release from porous polymeric scaffolds.
    Ozkizilcik A; Tuzlakoglu K
    J Tissue Eng Regen Med; 2014 Mar; 8(3):242-7. PubMed ID: 22499408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.
    Jansen EJ; Sladek RE; Bahar H; Yaffe A; Gijbels MJ; Kuijer R; Bulstra SK; Guldemond NA; Binderman I; Koole LH
    Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human osteoprogenitor bone formation using encapsulated bone morphogenetic protein 2 in porous polymer scaffolds.
    Yang XB; Whitaker MJ; Sebald W; Clarke N; Howdle SM; Shakesheff KM; Oreffo RO
    Tissue Eng; 2004; 10(7-8):1037-45. PubMed ID: 15363161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration.
    Zanjanizadeh Ezazi N; Shahbazi MA; Shatalin YV; Nadal E; Mäkilä E; Salonen J; Kemell M; Correia A; Hirvonen J; Santos HA
    Int J Pharm; 2018 Jan; 536(1):241-250. PubMed ID: 29195917
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of bioactive glasses on bone marrow stromal cells differentiation.
    Bosetti M; Cannas M
    Biomaterials; 2005 Jun; 26(18):3873-9. PubMed ID: 15626435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled drug release for tissue engineering.
    Rambhia KJ; Ma PX
    J Control Release; 2015 Dec; 219():119-128. PubMed ID: 26325405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of a mandibular condyle in vitro by tissue engineering.
    Abukawa H; Terai H; Hannouche D; Vacanti JP; Kaban LB; Troulis MJ
    J Oral Maxillofac Surg; 2003 Jan; 61(1):94-100. PubMed ID: 12524615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradable polymeric fiber structures in tissue engineering.
    Tuzlakoglu K; Reis RL
    Tissue Eng Part B Rev; 2009 Mar; 15(1):17-27. PubMed ID: 19093804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Rapid manufacturing of degradable porous polymer bone scaffold].
    Shi T; Yue X; Xiong Z; Zhang R; Yan Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jun; 19(2):348-9. PubMed ID: 12224317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osteoblast: osteoclast co-cultures on silk fibroin, chitosan and PLLA films.
    Jones GL; Motta A; Marshall MJ; El Haj AJ; Cartmell SH
    Biomaterials; 2009 Oct; 30(29):5376-84. PubMed ID: 19647869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering.
    Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W
    J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled Bioactive Molecules Delivery Strategies for Tendon and Ligament Tissue Engineering using Polymeric Nanofibers.
    Hiong Teh TK; Hong Goh JC; Toh SL
    Curr Pharm Des; 2015; 21(15):1991-2005. PubMed ID: 25732661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Osteoinductive biomaterial geometries for bone regenerative engineering.
    Ozdemir T; Higgins AM; Brown JL
    Curr Pharm Des; 2013; 19(19):3446-55. PubMed ID: 23432675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.
    Lv Q; Nair L; Laurencin CT
    J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and characterization of a fluvastatin-releasing hydrogel delivery system to modulate hMSC differentiation and function for bone regeneration.
    Benoit DS; Nuttelman CR; Collins SD; Anseth KS
    Biomaterials; 2006 Dec; 27(36):6102-10. PubMed ID: 16860387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.