These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17089790)

  • 41. Reconstruction of mandibular defects with autologous tissue-engineered bone.
    Abukawa H; Shin M; Williams WB; Vacanti JP; Kaban LB; Troulis MJ
    J Oral Maxillofac Surg; 2004 May; 62(5):601-6. PubMed ID: 15122567
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Graphene based scaffolds on bone tissue engineering.
    Shadjou N; Hasanzadeh M; Khalilzadeh B
    Bioengineered; 2018 Jan; 9(1):38-47. PubMed ID: 29095664
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect.
    Li L; Zhou G; Wang Y; Yang G; Ding S; Zhou S
    Biomaterials; 2015 Jan; 37():218-29. PubMed ID: 25453952
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Advances in polymeric systems for tissue engineering and biomedical applications.
    Ravichandran R; Sundarrajan S; Venugopal JR; Mukherjee S; Ramakrishna S
    Macromol Biosci; 2012 Mar; 12(3):286-311. PubMed ID: 22278779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine.
    Amiryaghoubi N; Fathi M; Pesyan NN; Samiei M; Barar J; Omidi Y
    Med Res Rev; 2020 Sep; 40(5):1833-1870. PubMed ID: 32301138
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlled release scaffolds for bone tissue engineering.
    Cartmell S
    J Pharm Sci; 2009 Feb; 98(2):430-41. PubMed ID: 18481312
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [The possibilities and perspectives of using scaffold technology for bone regeneration].
    Ivanov AN; Norkin IA; Puchin'ian DM
    Tsitologiia; 2014; 56(8):543-8. PubMed ID: 25696999
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells.
    Hou Y; Xie W; Achazi K; Cuellar-Camacho JL; Melzig MF; Chen W; Haag R
    Acta Biomater; 2018 Sep; 77():28-37. PubMed ID: 29981495
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gene delivery from polymer scaffolds for tissue engineering.
    Jang JH; Houchin TL; Shea LD
    Expert Rev Med Devices; 2004 Sep; 1(1):127-38. PubMed ID: 16293016
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biodegradable bead-on-spring nanofibers releasing β-carotene for bone tissue engineering.
    Esmailian S; Irani S; Bakhshi H; Zandi M
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():800-806. PubMed ID: 30184809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering.
    Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW
    Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Polymer-based composite scaffolds for tissue engineering.
    Gloria A; De Santis R; Ambrosio L
    J Appl Biomater Biomech; 2010; 8(2):57-67. PubMed ID: 20740467
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies.
    Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM
    J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Decellularized Bone Matrix Scaffold for Bone Regeneration.
    Chen G; Lv Y
    Methods Mol Biol; 2018; 1577():239-254. PubMed ID: 28770492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug.
    El-Fiqi A; Kim JH; Kim HW
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1140-52. PubMed ID: 25531645
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering.
    Luo Y; Wu C; Lode A; Gelinsky M
    Biofabrication; 2013 Mar; 5(1):015005. PubMed ID: 23228963
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering.
    Storrie H; Mooney DJ
    Adv Drug Deliv Rev; 2006 Jul; 58(4):500-14. PubMed ID: 16759734
    [TBL] [Abstract][Full Text] [Related]  

  • 60. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.
    Sun H; Meng F; Dias AA; Hendriks M; Feijen J; Zhong Z
    Biomacromolecules; 2011 Jun; 12(6):1937-55. PubMed ID: 21469742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.