BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 17089826)

  • 1. Signal and noise transfer properties of photoelectric interactions in diagnostic x-ray imaging detectors.
    Hajdok G; Yao J; Battista JJ; Cunningham IA
    Med Phys; 2006 Oct; 33(10):3601-20. PubMed ID: 17089826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamental x-ray interaction limits in diagnostic imaging detectors: frequency-dependent Swank noise.
    Hajdok G; Battista JJ; Cunningham IA
    Med Phys; 2008 Jul; 35(7):3194-204. PubMed ID: 18697544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascaded-systems analyses and the detective quantum efficiency of single-Z x-ray detectors including photoelectric, coherent and incoherent interactions.
    Yun S; Tanguay J; Kim HK; Cunningham IA
    Med Phys; 2013 Apr; 40(4):041916. PubMed ID: 23556910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of characteristic x rays on the noise power spectra and detective quantum efficiency of photoconductive x-ray detectors.
    Zhao W; Ji WG; Rowlands JA
    Med Phys; 2001 Oct; 28(10):2039-49. PubMed ID: 11695766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overestimations in zero frequency DQE of x-ray imaging converters assessed by Monte Carlo techniques based on the study of energy impartation events.
    Liaparinos PF; Kandarakis IS
    Med Phys; 2011 Jul; 38(7):4440-50. PubMed ID: 21859045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental x-ray interaction limits in diagnostic imaging detectors: spatial resolution.
    Hajdok G; Battista JJ; Cunningham IA
    Med Phys; 2008 Jul; 35(7):3180-93. PubMed ID: 18697543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detective quantum efficiency of photon-counting x-ray detectors.
    Tanguay J; Yun S; Kim HK; Cunningham IA
    Med Phys; 2015 Jan; 42(1):491-509. PubMed ID: 25563288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency.
    Zhao W; Rowlands JA
    Med Phys; 1997 Dec; 24(12):1819-33. PubMed ID: 9434965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging performance of amorphous selenium based flat-panel detectors for digital mammography: characterization of a small area prototype detector.
    Zhao W; Ji WG; Debrie A; Rowlands JA
    Med Phys; 2003 Feb; 30(2):254-63. PubMed ID: 12607843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of primary electron production inside an a-selenium detector for x-ray mammography: physics.
    Sakellaris T; Spyrou G; Tzanakos G; Panayiotakis G
    Phys Med Biol; 2005 Aug; 50(16):3717-38. PubMed ID: 16077223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: application to pulse-height spectroscopy in a-Se.
    Fang Y; Badal A; Allec N; Karim KS; Badano A
    Med Phys; 2012 Jan; 39(1):308-19. PubMed ID: 22225301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technical Note: Detective quantum efficiency simulation of a-Se imaging detectors using ARTEMIS.
    Fang Y; Ito T; Nariyuki F; Kuwabara T; Badano A; Karim KS
    Med Phys; 2017 Aug; 44(8):4035-4039. PubMed ID: 28569992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial frequency-dependent pulse-height spectrum and method for analyzing detector DQE(f) from ensembles of single X-ray images.
    Dow S; Howansky A; Lubinsky AR; Zhao W
    Med Phys; 2022 Jan; 49(1):107-128. PubMed ID: 34779519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral analysis of fundamental signal and noise performances in photoconductors for mammography.
    Kim HK; Lim CH; Tanguay J; Yun S; Cunningham IA
    Med Phys; 2012 May; 39(5):2478-90. PubMed ID: 22559618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amorphous selenium flat panel detectors for digital mammography: validation of a NPWE model observer with CDMAM observer performance experiments.
    Segui JA; Zhao W
    Med Phys; 2006 Oct; 33(10):3711-22. PubMed ID: 17089837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytic model of energy-absorption response functions in compound X-ray detector materials.
    Yun S; Kim HK; Youn H; Tanguay J; Cunningham IA
    IEEE Trans Med Imaging; 2013 Oct; 32(10):1819-28. PubMed ID: 23744671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the detective quantum efficiency of a developmental detector for digital mammography.
    Williams MB; Simoni PU; Smilowitz L; Stanton M; Phillips W; Stewart A
    Med Phys; 1999 Nov; 26(11):2273-85. PubMed ID: 10587208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging.
    Hu YH; Zhao W
    Med Phys; 2014 Nov; 41(11):111904. PubMed ID: 25370637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detective quantum efficiency of an amorphous selenium detector to megavoltage radiation.
    Mah D; Rawlinson JA; Rowlands JA
    Phys Med Biol; 1999 May; 44(5):1369-84. PubMed ID: 10368025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD x-ray detector.
    Hunter DM; Belev G; Kasap S; Yaffe MJ
    Med Phys; 2012 Feb; 39(2):608-22. PubMed ID: 22320770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.