BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 17089857)

  • 41. Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space.
    Chan HP; Wei D; Helvie MA; Sahiner B; Adler DD; Goodsitt MM; Petrick N
    Phys Med Biol; 1995 May; 40(5):857-76. PubMed ID: 7652012
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A method to test the reproducibility and to improve performance of computer-aided detection schemes for digitized mammograms.
    Zheng B; Gur D; Good WF; Hardesty LA
    Med Phys; 2004 Nov; 31(11):2964-72. PubMed ID: 15587648
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design of a high-sensitivity classifier based on a genetic algorithm: application to computer-aided diagnosis.
    Sahiner B; Chan HP; Petrick N; Helvie MA; Goodsitt MM
    Phys Med Biol; 1998 Oct; 43(10):2853-71. PubMed ID: 9814523
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computer-aided diagnosis: automatic detection of malignant masses in digitized mammograms.
    Méndez AJ; Tahoces PG; Lado MJ; Souto M; Vidal JJ
    Med Phys; 1998 Jun; 25(6):957-64. PubMed ID: 9650186
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Breast cancer diagnosis in digital mammogram using multiscale curvelet transform.
    Eltoukhy MM; Faye I; Samir BB
    Comput Med Imaging Graph; 2010 Jun; 34(4):269-76. PubMed ID: 20004076
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of temporal changes of mammographic features: computer-aided classification of malignant and benign breast masses.
    Hadjiiski L; Sahiner B; Chan HP; Petrick N; Helvie MA; Gurcan M
    Med Phys; 2001 Nov; 28(11):2309-17. PubMed ID: 11764038
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An approach to the detection of lesions in mammograms using fuzzy image processing.
    Bayram B; Acar U
    J Int Med Res; 2007; 35(6):790-5. PubMed ID: 18034992
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Local Binary Patterns Descriptor Based on Sparse Curvelet Coefficients for False-Positive Reduction in Mammograms.
    Pawar MM; Talbar SN; Dudhane A
    J Healthc Eng; 2018; 2018():5940436. PubMed ID: 30356422
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Breast lesion detection and classification: comparison of screen-film mammography and full-field digital mammography with soft-copy reading--observer performance study.
    Skaane P; Balleyguier C; Diekmann F; Diekmann S; Piguet JC; Young K; Niklason LT
    Radiology; 2005 Oct; 237(1):37-44. PubMed ID: 16100086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mass type-specific sparse representation for mass classification in computer-aided detection on mammograms.
    Kim DH; Lee SH; Ro YM
    Biomed Eng Online; 2013; 12 Suppl 1(Suppl 1):S3. PubMed ID: 24564973
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Eigendetection of masses considering false positive reduction and breast density information.
    Freixenet J; Oliver A; Martí R; Lladó X; Pont J; Pérez E; Denton ER; Zwiggelaar R
    Med Phys; 2008 May; 35(5):1840-53. PubMed ID: 18561659
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of enhancement methods for mammograms with performance measures.
    Kurt B; Nabiyev VV; Turhan K
    Stud Health Technol Inform; 2014; 205():486-90. PubMed ID: 25160232
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A concentric morphology model for the detection of masses in mammography.
    Eltonsy NH; Tourassi GD; Elmaghraby AS
    IEEE Trans Med Imaging; 2007 Jun; 26(6):880-9. PubMed ID: 17679338
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Image feature selection by a genetic algorithm: application to classification of mass and normal breast tissue.
    Sahiner B; Chan HP; Wei D; Petrick N; Helvie MA; Adler DD; Goodsitt MM
    Med Phys; 1996 Oct; 23(10):1671-84. PubMed ID: 8946365
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of border information in the classification of mammographic masses.
    Varela C; Timp S; Karssemeijer N
    Phys Med Biol; 2006 Jan; 51(2):425-41. PubMed ID: 16394348
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of using manual or automatic breast density information in a mass detection CAD system.
    Oliver A; Lladó X; Freixenet J; Martí R; Pérez E; Pont J; Zwiggelaar R
    Acad Radiol; 2010 Jul; 17(7):877-83. PubMed ID: 20540910
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features.
    Sakai A; Onishi Y; Matsui M; Adachi H; Teramoto A; Saito K; Fujita H
    Radiol Phys Technol; 2020 Mar; 13(1):27-36. PubMed ID: 31686300
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Correspondence in texture features between two mammographic views.
    Gupta S; Markey MK
    Med Phys; 2005 Jun; 32(6):1598-606. PubMed ID: 16013719
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.
    Kooi T; van Ginneken B; Karssemeijer N; den Heeten A
    Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Digital mammography: computer-assisted diagnosis method for mass detection with multiorientation and multiresolution wavelet transforms.
    Li L; Qian W; Clarke LP
    Acad Radiol; 1997 Nov; 4(11):724-31. PubMed ID: 9365751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.