These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 17090027)

  • 1. Signal ratio amplification via modulation of resonance energy transfer: proof of principle in an emission ratiometric Hg(II) sensor.
    Coskun A; Akkaya EU
    J Am Chem Soc; 2006 Nov; 128(45):14474-5. PubMed ID: 17090027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nanoparticle-supported fluorescence resonance energy transfer system formed via layer-by-layer approach as a ratiometric sensor for mercury ions in water.
    Ma C; Zeng F; Wu G; Wu S
    Anal Chim Acta; 2012 Jul; 734():69-78. PubMed ID: 22704474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion sensing coupled to resonance energy transfer: a highly selective and sensitive ratiometric fluorescent chemosensor for Ag(I) by a modular approach.
    Coskun A; Akkaya EU
    J Am Chem Soc; 2005 Aug; 127(30):10464-5. PubMed ID: 16045314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design strategies for ratiometric chemosensors: modulation of excitation energy transfer at the energy donor site.
    Guliyev R; Coskun A; Akkaya EU
    J Am Chem Soc; 2009 Jul; 131(25):9007-13. PubMed ID: 19485382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micelle-induced versatile performance of amphiphilic intramolecular charge-transfer fluorescent molecular sensors.
    Wang J; Qian X; Qian J; Xu Y
    Chemistry; 2007; 13(26):7543-52. PubMed ID: 17582820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance energy transfer approach and a new ratiometric probe for Hg2+ in aqueous media and living organism.
    Suresh M; Mishra S; Mishra SK; Suresh E; Mandal AK; Shrivastav A; Das A
    Org Lett; 2009 Jul; 11(13):2740-3. PubMed ID: 19507872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective and sensitive ratiometric detection of Hg(II) ions using a simple amino acid based sensor.
    Yang MH; Thirupathi P; Lee KH
    Org Lett; 2011 Oct; 13(19):5028-31. PubMed ID: 21888384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence ratiometric selective recognition of Cu(2+) ions by dansyl-naphthalimide dyads.
    Jisha VS; Thomas AJ; Ramaiah D
    J Org Chem; 2009 Sep; 74(17):6667-73. PubMed ID: 19639990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution.
    Huang CC; Chang HT
    Anal Chem; 2006 Dec; 78(24):8332-8. PubMed ID: 17165824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification.
    Zhu Z; Su Y; Li J; Li D; Zhang J; Song S; Zhao Y; Li G; Fan C
    Anal Chem; 2009 Sep; 81(18):7660-6. PubMed ID: 19691296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing a ratiometric fluorescence output from a sensor array.
    Wang Z; Palacios MA; Zyryanov G; Anzenbacher P
    Chemistry; 2008; 14(28):8540-6. PubMed ID: 18688830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ratiometric chemosensor for fluorescent determination of Hg(2+) based on a new porphyrin-quinoline dyad.
    Han ZX; Luo HY; Zhang XB; Kong RM; Shen GL; Yu RQ
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jun; 72(5):1084-8. PubMed ID: 19233718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calix[4]arene-based, Hg2+ -induced intramolecular fluorescence resonance energy transfer chemosensor.
    Othman AB; Lee JW; Wu JS; Kim JS; Abidi R; Thuéry P; Strub JM; Dorsselaer AV; Vicens J
    J Org Chem; 2007 Sep; 72(20):7634-40. PubMed ID: 17824650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells.
    Zhang X; Xiao Y; Qian X
    Angew Chem Int Ed Engl; 2008; 47(42):8025-9. PubMed ID: 18792904
    [No Abstract]   [Full Text] [Related]  

  • 15. Highly sensitive fluorescent sensor for mercury ion based on photoinduced charge transfer between fluorophore and pi-stacked T-Hg(II)-T base pairs.
    Guo L; Hu H; Sun R; Chen G
    Talanta; 2009 Aug; 79(3):775-9. PubMed ID: 19576444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 'turn-on' FRET peptide sensor based on the mercury binding protein MerP.
    White BR; Liljestrand HM; Holcombe JA
    Analyst; 2008 Jan; 133(1):65-70. PubMed ID: 18087615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Turn-on" fluorescent sensor for Hg2+ via displacement approach.
    He G; Zhao Y; He C; Liu Y; Duan C
    Inorg Chem; 2008 Jun; 47(12):5169-76. PubMed ID: 18479122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II).
    Li J; Mei F; Li WY; He XW; Zhang YK
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Sep; 70(4):811-7. PubMed ID: 18023245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design of a colorimetric and ratiometric fluorescent chemosensor based on intramolecular charge transfer (ICT).
    Shao J; Lin H; Lin H
    Talanta; 2008 Oct; 77(1):273-7. PubMed ID: 18804632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A protein-supported fluorescent reagent for the highly-sensitive and selective detection of mercury ions in aqueous solution and live cells.
    Ma LJ; Li Y; Li L; Sun J; Tian C; Wu Y
    Chem Commun (Camb); 2008 Dec; (47):6345-7. PubMed ID: 19048150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.