These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17090031)

  • 1. Direction specific interactions of 1,4-dicarboxylic acid with calcite surfaces.
    Teng HH; Chen Y; Pauli E
    J Am Chem Soc; 2006 Nov; 128(45):14482-4. PubMed ID: 17090031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning-induced growth on single crystal calcite with an atomic force microscope.
    McEvoy AL; Stevens F; Langford SC; Dickinson JT
    Langmuir; 2006 Aug; 22(16):6931-8. PubMed ID: 16863241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Speed Atomic Force Microscopy of the Structure and Dynamics of Calcite Nanoscale Etch Pits.
    Miyata K; Takeuchi K; Kawagoe Y; Spijker P; Tracey J; Foster AS; Fukuma T
    J Phys Chem Lett; 2021 Aug; 12(33):8039-8045. PubMed ID: 34402624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative single molecule measurements on the interaction forces of poly(L-glutamic acid) with calcite crystals.
    Sonnenberg L; Luo Y; Schlaad H; Seitz M; Cölfen H; Gaub HE
    J Am Chem Soc; 2007 Dec; 129(49):15364-71. PubMed ID: 18004846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps.
    Orme CA; Noy A; Wierzbicki A; McBride MT; Grantham M; Teng HH; Dove PM; DeYoreo JJ
    Nature; 2001 Jun; 411(6839):775-9. PubMed ID: 11459051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modes of action of a weak acid modifier of calcite growth.
    Dobson PS; Bindley LA; Macpherson JV; Unwin PR
    Chemphyschem; 2006 May; 7(5):1019-21. PubMed ID: 16557631
    [No Abstract]   [Full Text] [Related]  

  • 7. Self-Assembly of Protein Nanofibrils Orchestrates Calcite Step Movement through Selective Nonchiral Interactions.
    So CR; Liu J; Fears KP; Leary DH; Golden JP; Wahl KJ
    ACS Nano; 2015 Jun; 9(6):5782-91. PubMed ID: 25970003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clear signature of the (2 x 1) reconstruction of calcite (1014).
    Schütte J; Rahe P; Tröger L; Rode S; Bechstein R; Reichling M; Kühnle A
    Langmuir; 2010 Jun; 26(11):8295-300. PubMed ID: 20345111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eu3+ uptake by calcite: preliminary results from coprecipitation experiments and observations with surface-sensitive techniques.
    Stipp SL; Lakshtanov LZ; Jensen JT; Baker JA
    J Contam Hydrol; 2003 Mar; 61(1-4):33-43. PubMed ID: 12598092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study.
    Walters DA; Smith BL; Belcher AM; Paloczi GT; Stucky GD; Morse DE; Hansma PK
    Biophys J; 1997 Mar; 72(3):1425-33. PubMed ID: 9138588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The epitaxial growth of cholesterol crystals from bile solutions on calcite substrates.
    Frincu MC; Fleming SD; Rohl AL; Swift JA
    J Am Chem Soc; 2004 Jun; 126(25):7915-24. PubMed ID: 15212540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing Organophosphate Precipitation at the Calcite-Water Interface by in Situ Atomic-Force Microscopy.
    Wang L; Qin L; Putnis CV; Ruiz-Agudo E; King HE; Putnis A
    Environ Sci Technol; 2016 Jan; 50(1):259-68. PubMed ID: 26636475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ observation of the surface processes involved in dissolution from the cleavage surface of calcite in aqueous solution using combined scanning electrochemical-atomic force microscopy (SECM-AFM).
    Jones CE; Unwin PR; Macpherson JV
    Chemphyschem; 2003 Feb; 4(2):139-46. PubMed ID: 12619412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization.
    Sand KK; Yang M; Makovicky E; Cooke DJ; Hassenkam T; Bechgaard K; Stipp SL
    Langmuir; 2010 Oct; 26(19):15239-47. PubMed ID: 20812690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent attachment of proteins to calcite surface for the single molecule experiments.
    Denisov NN; Chtcheglova LA; Sekatskii SK; Dietler G
    Colloids Surf B Biointerfaces; 2008 Jun; 63(2):282-6. PubMed ID: 18243671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-induced reconstruction that affects mobile ions on the surface of calcite.
    Kendall TA; Martin ST
    J Phys Chem A; 2007 Jan; 111(3):505-14. PubMed ID: 17228899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins.
    Thompson JB; Paloczi GT; Kindt JH; Michenfelder M; Smith BL; Stucky G; Morse DE; Hansma PK
    Biophys J; 2000 Dec; 79(6):3307-12. PubMed ID: 11106633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of octacalcium phosphates with co-incorporated succinate and suberate ions.
    Yokoi T; Kato H; Kim IY; Kikuta K; Kamitakahara M; Kawashita M; Ohtsuki C
    Dalton Trans; 2012 Mar; 41(9):2732-7. PubMed ID: 22249371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic structure of the foliated calcite of bivalves.
    Checa AG; Esteban-Delgado FJ; Rodríguez-Navarro AB
    J Struct Biol; 2007 Feb; 157(2):393-402. PubMed ID: 17097305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution and carbonation of Portlandite [Ca(OH)2] single crystals.
    Ruiz-Agudo E; Kudłacz K; Putnis CV; Putnis A; Rodriguez-Navarro C
    Environ Sci Technol; 2013 Oct; 47(19):11342-9. PubMed ID: 23915181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.