BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17090056)

  • 1. Transition-state structure of human 5'-methylthioadenosine phosphorylase.
    Singh V; Schramm VL
    J Am Chem Soc; 2006 Nov; 128(45):14691-6. PubMed ID: 17090056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition state structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues.
    Singh V; Lee JE; Núñez S; Howell PL; Schramm VL
    Biochemistry; 2005 Sep; 44(35):11647-59. PubMed ID: 16128565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition-state analysis of S. pneumoniae 5'-methylthioadenosine nucleosidase.
    Singh V; Schramm VL
    J Am Chem Soc; 2007 Mar; 129(10):2783-95. PubMed ID: 17298059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote mutations alter transition-state structure of human purine nucleoside phosphorylase.
    Luo M; Li L; Schramm VL
    Biochemistry; 2008 Feb; 47(8):2565-76. PubMed ID: 18281957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases.
    Lewandowicz A; Schramm VL
    Biochemistry; 2004 Feb; 43(6):1458-68. PubMed ID: 14769022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition State Structure and Inhibition of Rv0091, a 5'-Deoxyadenosine/5'-methylthioadenosine Nucleosidase from Mycobacterium tuberculosis.
    Namanja-Magliano HA; Stratton CF; Schramm VL
    ACS Chem Biol; 2016 Jun; 11(6):1669-76. PubMed ID: 27019223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosyl geometry in the transition state of Streptococcus pneumoniae methylthioadenosine nucleosidase from the 3'-(2)H kinetic isotope effect.
    Luo M; Schramm VL
    J Am Chem Soc; 2008 Sep; 130(35):11617-9. PubMed ID: 18693725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenate and phosphate as nucleophiles at the transition states of human purine nucleoside phosphorylase.
    Silva RG; Hirschi JS; Ghanem M; Murkin AS; Schramm VL
    Biochemistry; 2011 Apr; 50(13):2701-9. PubMed ID: 21348499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Transition-State Structure for Human MAT2A from Isotope Effects.
    Firestone RS; Schramm VL
    J Am Chem Soc; 2017 Oct; 139(39):13754-13760. PubMed ID: 28880543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Picomolar transition state analogue inhibitors of human 5'-methylthioadenosine phosphorylase and X-ray structure with MT-immucillin-A.
    Singh V; Shi W; Evans GB; Tyler PC; Furneaux RH; Almo SC; Schramm VL
    Biochemistry; 2004 Jan; 43(1):9-18. PubMed ID: 14705926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition-state analysis of Trypanosoma cruzi uridine phosphorylase-catalyzed arsenolysis of uridine.
    Silva RG; Vetticatt MJ; Merino EF; Cassera MB; Schramm VL
    J Am Chem Soc; 2011 Jun; 133(25):9923-31. PubMed ID: 21599004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Second-sphere amino acids contribute to transition-state structure in bovine purine nucleoside phosphorylase.
    Li L; Luo M; Ghanem M; Taylor EA; Schramm VL
    Biochemistry; 2008 Feb; 47(8):2577-83. PubMed ID: 18281958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase at 1.7 A resolution provides insights into substrate binding and catalysis.
    Appleby TC; Erion MD; Ealick SE
    Structure; 1999 Jun; 7(6):629-41. PubMed ID: 10404592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleophilic participation in the transition state for human thymidine phosphorylase.
    Birck MR; Schramm VL
    J Am Chem Soc; 2004 Mar; 126(8):2447-53. PubMed ID: 14982453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory.
    Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM
    J Phys Chem A; 2008 Oct; 112(41):10264-73. PubMed ID: 18816038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy-driven binding of picomolar transition state analogue inhibitors to human 5'-methylthioadenosine phosphorylase.
    Guan R; Ho MC; Brenowitz M; Tyler PC; Evans GB; Almo SC; Schramm VL
    Biochemistry; 2011 Nov; 50(47):10408-17. PubMed ID: 21985704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neighboring group participation in the transition state of human purine nucleoside phosphorylase.
    Murkin AS; Birck MR; Rinaldo-Matthis A; Shi W; Taylor EA; Almo SC; Schramm VL
    Biochemistry; 2007 May; 46(17):5038-49. PubMed ID: 17407325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition state analysis of thymidine hydrolysis by human thymidine phosphorylase.
    Schwartz PA; Vetticatt MJ; Schramm VL
    J Am Chem Soc; 2010 Sep; 132(38):13425-33. PubMed ID: 20804144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic analysis of transition-state features in picomolar inhibitors of human 5'-methylthioadenosine phosphorylase.
    Guan R; Tyler PC; Evans GB; Schramm VL
    Biochemistry; 2013 Nov; 52(46):8313-22. PubMed ID: 24148083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition state structure of E. coli tRNA-specific adenosine deaminase.
    Luo M; Schramm VL
    J Am Chem Soc; 2008 Feb; 130(8):2649-55. PubMed ID: 18251477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.