BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 17090412)

  • 1. Aging: a shift from redox regulation to oxidative damage.
    Humphries KM; Szweda PA; Szweda LI
    Free Radic Res; 2006 Dec; 40(12):1239-43. PubMed ID: 17090412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the free radical theory of aging in bats.
    Brunet Rossinni AK
    Ann N Y Acad Sci; 2004 Jun; 1019():506-8. PubMed ID: 15247075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative modification of proteins: age-related changes.
    Chakravarti B; Chakravarti DN
    Gerontology; 2007; 53(3):128-39. PubMed ID: 17164550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial protein oxidation and degradation in response to oxidative stress and aging.
    Bulteau AL; Szweda LI; Friguet B
    Exp Gerontol; 2006 Jul; 41(7):653-7. PubMed ID: 16677792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radicals in aging: causal complexity and its biomedical implications.
    de Grey AD
    Free Radic Res; 2006 Dec; 40(12):1244-9. PubMed ID: 17090413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of oxidative damage and stress in aging.
    Bokov A; Chaudhuri A; Richardson A
    Mech Ageing Dev; 2004; 125(10-11):811-26. PubMed ID: 15541775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EPR spin-trapping of protein radicals to investigate biological oxidative mechanisms.
    Augusto O; Muntz Vaz S
    Amino Acids; 2007; 32(4):535-42. PubMed ID: 17048125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis.
    Qin G; Meng X; Wang Q; Tian S
    J Proteome Res; 2009 May; 8(5):2449-62. PubMed ID: 19239264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging.
    Wei YH; Wu SB; Ma YS; Lee HC
    Chang Gung Med J; 2009; 32(2):113-32. PubMed ID: 19403001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular redox regulation and prooxidant signaling systems: a new perspective on the free radical theory of aging.
    Linnane AW; Eastwood H
    Ann N Y Acad Sci; 2006 May; 1067():47-55. PubMed ID: 16803970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of proteasome-mediated protein degradation during oxidative stress and aging.
    Breusing N; Grune T
    Biol Chem; 2008 Mar; 389(3):203-9. PubMed ID: 18208355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the 'free radical theory of aging' hypothesis: physiological differences in long-lived and short-lived colubrid snakes.
    Robert KA; Brunet-Rossinni A; Bronikowski AM
    Aging Cell; 2007 Jun; 6(3):395-404. PubMed ID: 17381550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of mitochondrial redox circuitry in oxidative stress.
    Jones DP
    Chem Biol Interact; 2006 Oct; 163(1-2):38-53. PubMed ID: 16970935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The essential mechanisms of aging: Irreparable damage accumulation of biochemical side-reactions.
    Yin D; Chen K
    Exp Gerontol; 2005 Jun; 40(6):455-65. PubMed ID: 15935593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
    Sas K; Robotka H; Toldi J; Vécsei L
    J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology.
    Spitz DR; Azzam EI; Li JJ; Gius D
    Cancer Metastasis Rev; 2004; 23(3-4):311-22. PubMed ID: 15197331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals.
    Folkes LK; Christlieb M; Madej E; Stratford MR; Wardman P
    Chem Res Toxicol; 2007 Dec; 20(12):1885-94. PubMed ID: 17941699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle.
    Hütter E; Skovbro M; Lener B; Prats C; Rabøl R; Dela F; Jansen-Dürr P
    Aging Cell; 2007 Apr; 6(2):245-56. PubMed ID: 17376148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Susceptibility of mitochondrial superoxide dismutase to aluminium induced oxidative damage.
    Kumar V; Bal A; Gill KD
    Toxicology; 2009 Jan; 255(3):117-23. PubMed ID: 19010380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The essential requirement for superoxide radical and nitric oxide formation for normal physiological function and healthy aging.
    Linnane AW; Kios M; Vitetta L
    Mitochondrion; 2007; 7(1-2):1-5. PubMed ID: 17317335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.