BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 17090599)

  • 1. The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration.
    Kamisugi Y; Schlink K; Rensing SA; Schween G; von Stackelberg M; Cuming AC; Reski R; Cove DJ
    Nucleic Acids Res; 2006; 34(21):6205-14. PubMed ID: 17090599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens.
    Kamisugi Y; Cuming AC; Cove DJ
    Nucleic Acids Res; 2005 Nov; 33(19):e173. PubMed ID: 16282584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens.
    Hohe A; Egener T; Lucht JM; Holtorf H; Reinhard C; Schween G; Reski R
    Curr Genet; 2004 Jan; 44(6):339-47. PubMed ID: 14586556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombination products suggest the frequent occurrence of aberrant gene replacement in the moss Physcomitrella patens.
    Wendeler E; Zobell O; Chrost B; Reiss B
    Plant J; 2015 Feb; 81(4):548-58. PubMed ID: 25557140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAD51 loss of function abolishes gene targeting and de-represses illegitimate integration in the moss Physcomitrella patens.
    Schaefer DG; Delacote F; Charlot F; Vrielynck N; Guyon-Debast A; Le Guin S; Neuhaus JM; Doutriaux MP; Nogué F
    DNA Repair (Amst); 2010 May; 9(5):526-33. PubMed ID: 20189889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A specific member of the Cab multigene family can be efficiently targeted and disrupted in the moss Physcomitrella patens.
    Hofmann AH; Codón AC; Ivascu C; Russo VE; Knight C; Cove D; Schaefer DG; Chakhparonian M; Zrÿd JP
    Mol Gen Genet; 1999 Feb; 261(1):92-9. PubMed ID: 10071214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient gene targeting in the moss Physcomitrella patens.
    Schaefer DG; Zrÿd JP
    Plant J; 1997 Jun; 11(6):1195-206. PubMed ID: 9225463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new moss genetics: targeted mutagenesis in Physcomitrella patens.
    Schaefer DG
    Annu Rev Plant Biol; 2002; 53():477-501. PubMed ID: 12221986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The moss Physcomitrella patens, a new model system for functional genomics].
    Dong W; Li W; Guo GX; Zheng GC
    Yi Chuan; 2004 Jul; 26(4):560-6. PubMed ID: 15640062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning of the PpMSH-2 cDNA of Physcomitrella patens, a moss in which gene targeting by homologous recombination occurs at high frequency.
    Brun F; Gonneau M; Doutriaux MP; Laloue M; Nogué F
    Biochimie; 2001; 83(11-12):1003-8. PubMed ID: 11879728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knocking Out the Wall: Revised Protocols for Gene Targeting in Physcomitrella patens.
    Roberts AW; Dimos CS; Budziszek MJ; Goss CA; Lai V; Chaves AM
    Methods Mol Biol; 2020; 2149():125-144. PubMed ID: 32617933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein encoding genes in an ancient plant: analysis of codon usage, retained genes and splice sites in a moss, Physcomitrella patens.
    Rensing SA; Fritzowsky D; Lang D; Reski R
    BMC Genomics; 2005 Mar; 6():43. PubMed ID: 15784153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Transcriptional Response to DNA-Double-Strand Breaks in Physcomitrella patens.
    Kamisugi Y; Whitaker JW; Cuming AC
    PLoS One; 2016; 11(8):e0161204. PubMed ID: 27537368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens.
    King BC; Vavitsas K; Ikram NK; Schrøder J; Scharff LB; Bassard JÉ; Hamberger B; Jensen PE; Simonsen HT
    Sci Rep; 2016 Apr; 6():25030. PubMed ID: 27126800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens.
    Kamisugi Y; Schaefer DG; Kozak J; Charlot F; Vrielynck N; Holá M; Angelis KJ; Cuming AC; Nogué F
    Nucleic Acids Res; 2012 Apr; 40(8):3496-510. PubMed ID: 22210882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library.
    Egener T; Granado J; Guitton MC; Hohe A; Holtorf H; Lucht JM; Rensing SA; Schlink K; Schulte J; Schween G; Zimmermann S; Duwenig E; Rak B; Reski R
    BMC Plant Biol; 2002 Jul; 2():6. PubMed ID: 12123528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative promoter analysis in Physcomitrella patens: a set of plant vectors activating gene expression within three orders of magnitude.
    Horstmann V; Huether CM; Jost W; Reski R; Decker EL
    BMC Biotechnol; 2004 Jul; 4():13. PubMed ID: 15239842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homologous recombination and gene targeting in plant cells.
    Reiss B
    Int Rev Cytol; 2003; 228():85-139. PubMed ID: 14667043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of non-homologous end-joining deficiency on random and targeted DNA integration: implications for gene targeting.
    Iiizumi S; Kurosawa A; So S; Ishii Y; Chikaraishi Y; Ishii A; Koyama H; Adachi N
    Nucleic Acids Res; 2008 Nov; 36(19):6333-42. PubMed ID: 18835848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intragenic mutagenesis strategy in Physcomitrella patens to preserve intron splicing.
    Ako AE; Perroud PF; Innocent J; Demko V; Olsen OA; Johansen W
    Sci Rep; 2017 Jul; 7(1):5111. PubMed ID: 28698618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.