These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 17090599)

  • 21. Efficient gene targeting in Kluyveromyces lactis.
    Kooistra R; Hooykaas PJ; Steensma HY
    Yeast; 2004 Jul; 21(9):781-92. PubMed ID: 15282801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterologous stable expression of terpenoid biosynthetic genes using the moss Physcomitrella patens.
    Bach SS; King BC; Zhan X; Simonsen HT; Hamberger B
    Methods Mol Biol; 2014; 1153():257-71. PubMed ID: 24777804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted site-directed mutagenesis of a heme oxygenase locus by gene replacement in the moss Ceratodon purpureus.
    Brücker G; Mittmann F; Hartmann E; Lamparter T
    Planta; 2005 Apr; 220(6):864-74. PubMed ID: 15578218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker.
    Maier FJ; Malz S; Lösch AP; Lacour T; Schäfer W
    FEMS Yeast Res; 2005 Apr; 5(6-7):653-62. PubMed ID: 15780665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Autopolyploidization affects transcript patterns and gene targeting frequencies in Physcomitrella.
    Rempfer C; Wiedemann G; Schween G; Kerres KL; Lucht JM; Horres R; Decker EL; Reski R
    Plant Cell Rep; 2022 Jan; 41(1):153-173. PubMed ID: 34636965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted knock-out of a gene encoding sulfite reductase in the moss Physcomitrella patens affects gametophytic and sporophytic development.
    Wiedemann G; Hermsen C; Melzer M; Büttner-Mainik A; Rennenberg H; Reski R; Kopriva S
    FEBS Lett; 2010 Jun; 584(11):2271-8. PubMed ID: 20347810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Method for Bxb1-mediated site-specific integration in planta.
    Yau YY; Wang Y; Thomson JG; Ow DW
    Methods Mol Biol; 2011; 701():147-66. PubMed ID: 21181529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification and characterisation of a bryophyte polyphenol oxidase encoding gene from Physcomitrella patens.
    Richter H; Lieberei R; von Schwartzenberg K
    Plant Biol (Stuttg); 2005 May; 7(3):283-91. PubMed ID: 15912448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of mitochondrial-targeted RecA in the repair of mitochondrial DNA in the moss, Physcomitrella patens.
    Odahara M; Inouye T; Fujita T; Hasebe M; Sekine Y
    Genes Genet Syst; 2007 Feb; 82(1):43-51. PubMed ID: 17396019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss Physcomitrella patens.
    Trouiller B; Schaefer DG; Charlot F; Nogué F
    Nucleic Acids Res; 2006; 34(1):232-42. PubMed ID: 16397301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient gene targeting by homologous recombination in rice.
    Terada R; Urawa H; Inagaki Y; Tsugane K; Iida S
    Nat Biotechnol; 2002 Oct; 20(10):1030-4. PubMed ID: 12219079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeted Gene Knockouts by Protoplast Transformation in the Moss
    Zhu L
    Front Genome Ed; 2021; 3():719087. PubMed ID: 34977859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens by shuttle mutagenesis.
    Nishiyama T; Hiwatashi Y; Sakakibara I; Kato M; Hasebe M
    DNA Res; 2000 Feb; 7(1):9-17. PubMed ID: 10718194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive Annotation of Physcomitrella patens Small RNA Loci Reveals That the Heterochromatic Short Interfering RNA Pathway Is Largely Conserved in Land Plants.
    Coruh C; Cho SH; Shahid S; Liu Q; Wierzbicki A; Axtell MJ
    Plant Cell; 2015 Aug; 27(8):2148-62. PubMed ID: 26209555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration.
    Chilton MD; Que Q
    Plant Physiol; 2003 Nov; 133(3):956-65. PubMed ID: 14551336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene targeting in Physcomitrella patens.
    Schaefer DG
    Curr Opin Plant Biol; 2001 Apr; 4(2):143-50. PubMed ID: 11228437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Establishment of gene-trap and enhancer-trap systems in the moss Physcomitrella patens.
    Hiwatashi Y; Nishiyama T; Fujita T; Hasebe M
    Plant J; 2001 Oct; 28(1):105-16. PubMed ID: 11696191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog.
    Pöggeler S; Kück U
    Gene; 2006 Aug; 378():1-10. PubMed ID: 16814491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The organization of Physcomitrella patensRAD51 genes is unique among eukaryotic organisms.
    Markmann-Mulisch U; Hadi MZ; Koepchen K; Alonso JC; Russo VE; Schell J; Reiss B
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2959-64. PubMed ID: 11880641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Knocking out the wall: protocols for gene targeting in Physcomitrella patens.
    Roberts AW; Dimos CS; Budziszek MJ; Goss CA; Lai V
    Methods Mol Biol; 2011; 715():273-90. PubMed ID: 21222091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.