These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 17090682)
1. The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution. Coto PB; Strambi A; Ferré N; Olivucci M Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17154-9. PubMed ID: 17090682 [TBL] [Abstract][Full Text] [Related]
2. Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Andruniów T; Ferré N; Olivucci M Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17908-13. PubMed ID: 15604139 [TBL] [Abstract][Full Text] [Related]
3. Quantum chemical modeling of rhodopsin mutants displaying switchable colors. Melaccio F; Ferré N; Olivucci M Phys Chem Chem Phys; 2012 Sep; 14(36):12485-95. PubMed ID: 22699180 [TBL] [Abstract][Full Text] [Related]
4. Simple Models to Study Spectral Properties of Microbial and Animal Rhodopsins: Evaluation of the Electrostatic Effect of Charged and Polar Residues on the First Absorption Band Maxima. Shtyrov AA; Nikolaev DM; Mironov VN; Vasin AV; Panov MS; Tveryanovich YS; Ryazantsev MN Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809708 [TBL] [Abstract][Full Text] [Related]
5. Electrostatic control of the photoisomerization efficiency and optical properties in visual pigments: on the role of counterion quenching. Tomasello G; Olaso-González G; Altoè P; Stenta M; Serrano-Andrés L; Merchán M; Orlandi G; Bottoni A; Garavelli M J Am Chem Soc; 2009 Apr; 131(14):5172-86. PubMed ID: 19309158 [TBL] [Abstract][Full Text] [Related]
6. Calculating absorption shifts for retinal proteins: computational challenges. Wanko M; Hoffmann M; Strodel P; Koslowski A; Thiel W; Neese F; Frauenheim T; Elstner M J Phys Chem B; 2005 Mar; 109(8):3606-15. PubMed ID: 16851399 [TBL] [Abstract][Full Text] [Related]
7. Red/Green Color Tuning of Visual Rhodopsins: Electrostatic Theory Provides a Quantitative Explanation. Collette F; Renger T; Müh F; Schmidt Am Busch M J Phys Chem B; 2018 May; 122(18):4828-4837. PubMed ID: 29652503 [TBL] [Abstract][Full Text] [Related]
8. Molecular bases for the selection of the chromophore of animal rhodopsins. Luk HL; Melaccio F; Rinaldi S; Gozem S; Olivucci M Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15297-302. PubMed ID: 26607446 [TBL] [Abstract][Full Text] [Related]
9. Building a model of the blue cone pigment based on the wild type rhodopsin structure with QM/MM methods. Frähmcke JS; Wanko M; Elstner M J Phys Chem B; 2012 Mar; 116(10):3313-21. PubMed ID: 22332756 [TBL] [Abstract][Full Text] [Related]
10. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra. Kloppmann E; Becker T; Ullmann GM Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786 [TBL] [Abstract][Full Text] [Related]
11. Color Tuning in Bovine Rhodopsin through Polarizable Embedding. Di Prima D; Reinholdt P; Kongsted J J Phys Chem B; 2024 Mar; 128(12):2864-2873. PubMed ID: 38489248 [TBL] [Abstract][Full Text] [Related]
12. Color tuning in short wavelength-sensitive human and mouse visual pigments: ab initio quantum mechanics/molecular mechanics studies. Altun A; Yokoyama S; Morokuma K J Phys Chem A; 2009 Oct; 113(43):11685-92. PubMed ID: 19630373 [TBL] [Abstract][Full Text] [Related]
13. Effect of polarization on the opsin shift in rhodopsins. 2. Empirical polarization models for proteins. Wanko M; Hoffmann M; Frähmcke J; Frauenheim T; Elstner M J Phys Chem B; 2008 Sep; 112(37):11468-78. PubMed ID: 18729405 [TBL] [Abstract][Full Text] [Related]
14. Impacts of retinal polyene (de)methylation on the photoisomerization mechanism and photon energy storage of rhodopsin. Walczak E; Andruniów T Phys Chem Chem Phys; 2015 Jul; 17(26):17169-81. PubMed ID: 26074351 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins. Rinaldi S; Melaccio F; Gozem S; Fanelli F; Olivucci M Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1714-9. PubMed ID: 24449866 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of spectral tuning going from retinal in vacuo to bovine rhodopsin and its mutants: multireference ab initio quantum mechanics/molecular mechanics studies. Altun A; Yokoyama S; Morokuma K J Phys Chem B; 2008 Dec; 112(51):16883-90. PubMed ID: 19367945 [TBL] [Abstract][Full Text] [Related]
17. Understanding rhodopsin mutations linked to the retinitis pigmentosa disease: a QM/MM and DFT/MRCI study. Hernández-Rodríguez EW; Sánchez-García E; Crespo-Otero R; Montero-Alejo AL; Montero LA; Thiel W J Phys Chem B; 2012 Jan; 116(3):1060-76. PubMed ID: 22126625 [TBL] [Abstract][Full Text] [Related]
18. Assessment of MC-PDFT Excitation Energies for a Set of QM/MM Models of Rhodopsins. Marín MDC; De Vico L; Dong SS; Gagliardi L; Truhlar DG; Olivucci M J Chem Theory Comput; 2019 Mar; 15(3):1915-1923. PubMed ID: 30721054 [TBL] [Abstract][Full Text] [Related]
19. Origin of the absorption maxima of the photoactive yellow protein resolved via ab initio multiconfigurational methods. Coto PB; Martí S; Oliva M; Olivucci M; Merchán M; Andrés J J Phys Chem B; 2008 Jun; 112(24):7153-6. PubMed ID: 18507438 [TBL] [Abstract][Full Text] [Related]
20. Electron density deformations provide new insights into the spectral shift of rhodopsins. Hernández-Rodríguez EW; Montero-Alejo AL; López R; Sánchez-García E; Montero-Cabrera LA; de la Vega JM J Comput Chem; 2013 Oct; 34(28):2460-71. PubMed ID: 23983208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]