BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 17090685)

  • 1. Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX.
    Thibault G; Yudin J; Wong P; Tsitrin V; Sprangers R; Zhao R; Houry WA
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17724-9. PubMed ID: 17090685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the N-terminal domain of the chaperone ClpX in the recognition and degradation of lambda phage protein O.
    Thibault G; Houry WA
    J Phys Chem B; 2012 Jun; 116(23):6717-24. PubMed ID: 22360725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of SspB-tail recognition by the zinc binding domain of ClpX.
    Park EY; Lee BG; Hong SB; Kim HW; Jeon H; Song HK
    J Mol Biol; 2007 Mar; 367(2):514-26. PubMed ID: 17258768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone.
    Thibault G; Tsitrin Y; Davidson T; Gribun A; Houry WA
    EMBO J; 2006 Jul; 25(14):3367-76. PubMed ID: 16810315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase.
    Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA
    Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species.
    Chowdhury T; Chien P; Ebrahim S; Sauer RT; Baker TA
    Protein Sci; 2010 Feb; 19(2):242-54. PubMed ID: 20014030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA.
    Zeth K; Ravelli RB; Paal K; Cusack S; Bukau B; Dougan DA
    Nat Struct Biol; 2002 Dec; 9(12):906-11. PubMed ID: 12426582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal efficiency of ClpAP and ClpXP chaperone-proteases is achieved by architectural symmetry.
    Maglica Z; Kolygo K; Weber-Ban E
    Structure; 2009 Apr; 17(4):508-16. PubMed ID: 19368884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The flexible attachment of the N-domains to the ClpA ring body allows their use on demand.
    Cranz-Mileva S; Imkamp F; Kolygo K; Maglica Z; Kress W; Weber-Ban E
    J Mol Biol; 2008 Apr; 378(2):412-24. PubMed ID: 18358489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of the dimeric zinc binding domain of the chaperone ClpX.
    Donaldson LW; Wojtyra U; Houry WA
    J Biol Chem; 2003 Dec; 278(49):48991-6. PubMed ID: 14525985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function.
    Wojtyra UA; Thibault G; Tuite A; Houry WA
    J Biol Chem; 2003 Dec; 278(49):48981-90. PubMed ID: 12937164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic investigation of peptide binding sites in the N-domain of the ClpA chaperone.
    Xia D; Esser L; Singh SK; Guo F; Maurizi MR
    J Struct Biol; 2004; 146(1-2):166-79. PubMed ID: 15037248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trans-targeting of protease substrates by conformationally activating a regulable ClpX-recognition motif.
    Marshall-Batty KR; Nakai H
    Mol Microbiol; 2008 Feb; 67(4):920-33. PubMed ID: 18179597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique contacts direct high-priority recognition of the tetrameric Mu transposase-DNA complex by the AAA+ unfoldase ClpX.
    Abdelhakim AH; Oakes EC; Sauer RT; Baker TA
    Mol Cell; 2008 Apr; 30(1):39-50. PubMed ID: 18406325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered specificity of a AAA+ protease.
    Farrell CM; Baker TA; Sauer RT
    Mol Cell; 2007 Jan; 25(1):161-6. PubMed ID: 17218279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity.
    Maglica Z; Striebel F; Weber-Ban E
    J Mol Biol; 2008 Dec; 384(2):503-11. PubMed ID: 18835567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AAA+ molecular machines: firing on all cylinders.
    Ades SE
    Curr Biol; 2006 Jan; 16(2):R46-8. PubMed ID: 16431356
    [No Abstract]   [Full Text] [Related]  

  • 19. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2008 Feb; 29(4):441-50. PubMed ID: 18313382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication between ClpX and ClpP during substrate processing and degradation.
    Joshi SA; Hersch GL; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2004 May; 11(5):404-11. PubMed ID: 15064753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.